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Ernesto Soto Gómez1[0000-0001-6521-2221]*

1Universidad de las Ciencias Informáticas. Carretera a San Antonio de los Baños, Km. 2 1⁄2. Torrens, La
Lisa, La Habana, Cuba. esoto@uci.cu

∗Autor para correspondencia: esoto@uci.cu

Resumen
GitHub es una plataforma que proporciona alojamiento para el control de versiones de desarrollo de software
utilizando Git. Cuenta con una interfaz de programación de aplicaciones para permitir que el software inter-
actúe con la plataforma. La enorme cantidad de información alojada en GitHub puede ser útil para realizar
estudios sobre la presencia actual de herramientas de desarrollo en la comunidad de desarrollo de software de
código abierto. Sin embargo, el motor de búsqueda posee restricciones que hacen imposible emitir consultas
complejas a la plataforma. En este informe, se describe una solución extensible y orientada a objetos, llamada
QuantityEr, para obtener la cantidad de resultados de búsqueda de consultas complejas a GitHub utilizando
el principio de inclusión- exclusión. Se presentan las definiciones matemáticas y los conceptos relacionados. Se
discute el modelo matemático. Se presentan el diseño general de la aplicación y las herramientas de desarrollo
utilizadas. Además, son mostrados resultados de ejemplos de ejecución. Se concluye que el problema tratado
ha sido resuelto, aunque se puede trabajar para mejorar la solución.

Palabras claves: cantidad de resultados de búsqueda, GitHub, principio de inclusión-exclusión, programación
orientada a objetos, Python

Abstract
GitHub is a platform that provides hosting for software development version control using Git. It features an
application programming interface to allow the software to interact with the platform. The enormous quantity
of information Hosted in GitHub may be useful to make studies about the current presence of development tools
in the open-source software development community. However, the search engine has restrictions that make
it impossible to issue complex queries to the platform. In this report, it is described as an object-oriented and
extensible solution, named QuantityEr, to obtain the number of search results of complex queries to GitHub
by using the inclusion-exclusion principle. The mathematical definitions, as well as related concepts, are
presented. The mathematical model is discussed. The application of general design and used development tools
are presented. Also, the results of the execution examples are showed. It is concluded that the treated problem
has been solved although more work may be done to improve the solution.
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Introduction

GitHub1 is a platform that provides hosting for software development version control using Git2. It provides

several collaboration features such as bug tracking, feature requests, task management, and wikis for every

project. It also features an application programming interface (API) to allow software to interact with the

platform3 [1]. Through this API a search engine can be accessed. The search engine allows users to find almost

every single aspect across several projects, source codes and other areas and features of the platform4 [2]. A

web page that serves as an interface to the search API is also available5.

As of August 2019, GitHub reports having over 40 million users and more than 100 million repositories6. This

enormous quantity of information may be useful, among other things, to obtain the number of projects, source

codes, issues, etc, that mention a set of technologies, tools, development libraries, etc, in order to make studies

about the current presence of these tools in the open source software development community. Other kind of

quantitative studies may be done as well [3]. Examples of those kinds of research are [4–7].

However, the search engine has some restrictions4 that make impossible to issue complex queries to the

platform. According to the GitHub Developer Guide4, the restrictions are the following:

• The Search API does not support queries that:

– are longer than 256 characters (not including operators or qualifiers).

– have more than five AND, OR, or NOT operators.

• For authenticated requests can be made up to 30 requests per minute. For unauthenticated requests,

the rate limit allows making up to 10 requests per minute.

Furthermore, if the search is over source code files, especial restrictions apply7.

A system named GHTorrent have been already developed to ease the interaction with the large quantity of

1https://github.com/
2https://git-scm.com/
3https://developer.github.com/v3
4https://developer.github.com/v3/search/
5https://github.com/search
6https://github.com/about
7https://developer.github.com/v3/search/#search-code
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information hosted in GitHub8 [8]. This solution is mainly conceived to mirror the data hosted in GitHub in

order to facilitate parallel access and studies on snapshots of the data, but does not provide an alternative

to making complex queries to GitHub. In fact, this system has its own restrictions on the quantity of data

that can be accessed at any time9 10. Also, the system only provides snapshots for a reduced set of projects11

12. Moreover, its design is centered only on the interaction with the repositories of GitHub. This means, for

example, that search on source code is not allowed. Furthermore, the objective of the system is to interact

with GitHub, which means that a future interaction with other platforms is not currently conceived.

A different kind of alternative is GH Archive13 which records events form GitHub14. The recorded data can

be accessed through BigQuery15 which allows any kind of SQL-like queries. GH Archive, although a powerful

and flexible solution, does not constitute an alternative to explore the data stored in GitHub but a tool to

explore the data that represents the interaction with GitHub. This means that, for example, searching inside

public source code cannot be done with GH Archive.

Moreover, both of these systems are server like development tools and not client applications ready to use for

making queries.

In the context of this article, complex queries are those that have many logical connectives and sub-expressions

–for example: A OR (C AND (D OR E))– especially those that exceed the allowed number of logical operators.

By getting the results number of queries of this kind, analysis of the current presence of technologies might

be done. Although many reporting tools has been developed none of them are capable of getting the number

amount of complex queries directly to GitHub. Some of these tools are listed in https://www.gharchive.org/.

Another example not listed in previous URL is https://www.programcreek.com/. In that case the reports

are just for statically-selected libraries from statically-selected languages.

In this report, it is described a simple solution, named QuantityEr16, to obtain the search results number of

complex queries directly to GitHub. The proposed design was conceived with the aim of extension in mind, in

such a way that it would be possible to incorporate the ability to interact with other similar platforms besides

GitHub as well as other queries languages and algorithms for obtaining the amount of search results.

8http://ghtorrent.org/
9http://ghtorrent.org/raw.html

10http://ghtorrent.org/mysql.html
11http://ghtorrent.org/mongo.html
12http://ghtorrent.org/relational.html
13https://www.gharchive.org/
14https://developer.github.com/v3/activity/events/types/
15https://developers.google.com/apps-script/advanced/bigquery
16Source code accessible from https://github.com/EStog/QuantityEr/tree/v0.1
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The current document is structured in the following manner. Section exposes some mathematical definitions

and concepts necessary to understand the proposed solution. Section describes the proposed solution as well

as some usage examples. Section makes the final remarks and conclude.

Mathematical background

In order to understand the proposed solution, some mathematical background is necessary. To archive a self-

contained report, in this section is mentioned the principal mathematical concepts used in the design of the

solution. The following definitions (or equivalent ones) as well of other complementary concepts and profs can

be found in the cited references [9–17].

The following notations will be used in this report.

• ℘(A) denotes the power set of a set A, that is the set of all subsets of A.

• |A| denotes the cardinality of a set A, that is the number of elements in A.

• ∅ denotes the empty set.

Boolean algebras

The first essential concept important to the design of the proposed solution is that of Boolean algebra.

Definition 1. A Boolean algebra is a tuple (S,+, ·,′ ,⊥,>) where S is a set containing distinct elements ⊥
and >, + and · are binary operators on S and ′ is a unary operator on S. Every Boolean algebra satisfies the

following laws for all x, y, z ∈ S.

Commutative laws: x + y = y + x x · y = y · x
Distributive laws: x · (y + z) = (x · y) + (x · z) x + (y · z) = (x + y) · (x + z)

Identity laws: x +⊥ = x x · > = x

Complement laws: x + x′ = > x · x′ = ⊥

Associative and idempotent laws, as well as other laws can be also considered since they follow from the

definition laws. Furthermore, other useful operators can be derived from the previous ones [12,14,16].

Fact 1. In a Boolean algebra (S,+, ·,′ ,⊥,>) the following laws are satisfied for all x, y, z ∈ S:
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Associative laws: x + (y + z) = (x + y) + z x · (y · z) = (x · y) · z
Idempotent laws: x + x = x x · x = x

Boolean algebras are used to model operations over the elements of a set that relates two elements with the

maximum (+ operation) or the minimum (· operation) of both elements in a partial order where the minimum

and the maximum are ⊥ and >, respectively. In other words, a partial order ≤ can be defined over S where

∀a, b ∈ S
(
a ≤ b ⇐⇒ a + b = b

)
or equivalently

∀a, b ∈ S
(
a ≤ b ⇐⇒ a · b = a

)
and

∀a ∈ S
(
⊥ ≤ a ≤ >

)
[14].

Also, intuitively speaking, all the elements have an associated complement counterpart that together from the

maximum but apart form the minimum as stated in the complement laws.

Fact 2. The tuple
(
{0, 1} ,∨,∧,¬, 0, 1

)
is a Boolean algebra with the operations of disjunction (∨), conjunction

(∧) and negation (¬) defined as follow.

∨ 0 1

0 0 1

1 1 1

∧ 0 1

0 0 0

1 0 1

x ¬x
0 1

1 0

This is the most elemental Boolean algebra and is the one found in classical binary logic that has applications

in several areas of computer sciences [10,12–14].

Fact 3. The tuple
(
℘ (U) ,∪,∩,C,∅, U

)
is a Boolean algebra with the operation of union (∪), intersection (∩)

and complement (C) defined as follows for all X,Y ∈ ℘(U).

X ∪ Y =
{
x | x ∈ X ∨ x ∈ Y

}
X ∩ Y =

{
x | x ∈ X ∧ x ∈ Y

}
XC =

{
x | x /∈ X

}
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This specific Boolean algebra is of great interest in science since mathematics in general are founded in set

theory [11–14].

In this specific work, the last two described Boolean algebras are crucial because the current problem is to

find the number of objects that makes true a logical sentence. In this context, the logical sentence is the query

to be issue to the platform. The proposed solution takes advantage of the equivalences between classical logic

and set theory in the context of Boolean algebras to solve this problem.

Boolean functions

In some contexts, the combination of operations in the set {0, 1} are called Boolean functions. The following

definitions relate to this subject.

Definition 2 (Boolean function). A Boolean function of degree n is a function f : {0, 1}n → {0, 1} where f

is an atom (a single variable or value) or a composition of the operations ∧, ∨ and ¬ of the Boolean algebra(
{0, 1} ,∨,∧,¬, 0, 1

)
. This composition is called a Boolean expression, and the variables of the Boolean

expression are called Boolean variables.

This concept has wide application in logic gates circuits design. In this topic one of the main problems is the

simplification of Boolean expressions [9, 12,14,16].

In the case of this work, these are of great importance because, as we will see, each query has an associ-

ated Boolean expression. The objective is to simplify it in order to obtain an expression that involves less

computation.

The simplification of a Boolean expressions may be done symbolically by applying the laws of a Boolean

algebra (definition 1) but also by applying specific methods that simplify an equivalent form of the expression.

Definition 3. Two Boolean expressions A (x1, x2 . . . , xn) and B (x1, x2, . . . , xn) are equivalent if ∀x1, x2, . . . , xn ∈
{0, 1}

(
A (x1, x2, . . . , xn) = B (x1, x2, . . . , xn)

)
.

Definition 4. A normal form of a Boolean expression f(x1, x2, . . . , xn) is an equivalent Boolean expression

in the form g(x1, x2, . . . , xn) = t1 ∗ t2∗, . . . , ∗tm where each t1≤i≤m is in the form y1 ? y2?, . . . , ?yk≤n and each

y1≤j≤k is in the form xk or ¬xk where 1 ≤ k ≤ n.

When ∗ is ∧ and ? is ∨ the normal form is called conjunctive (CNF). Similarly, when ∗ is ∨ and ? is ∧ the

normal form is called disjunctive (DNF). Additionally, when the normal form is conjunctive each t1≤i≤m is

called a maxterm. Similarly, when the normal form is disjunctive each t1≤i≤m is called a minterm.
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The Quine-McCluskey algorithm is one of such methods that uses the normal form of a Boolean expression,

specifically DNF, to obtain an equivalent minimal expression. The algorithm, in essence, test combinations

of the minterms in order to find those that are essential to represent the value of the expression. It is known

that it does not performance well when the size of the input, in this case the expression to simplify, is big. In

fact, the problem of simplification of Boolean expressions is considered NP-hard [12,14,16].

However, the simplification of a Boolean expression is steel of great importance to this work, because small

queries are preferable to big ones.

Definition 5. Let X1, X2, . . . , Xn be given sets. A predicate is a function P : X1 × X2×, . . . , Xn → {0, 1}
[10, 13].

It obvious that a predicate has an associated Boolean expression if each atom is replaced by a Boolean variable.

Definition 6. The expression S =
{
x | P (x)

}
is equivalent to x ∈ S ⇐⇒ P (x) [11].

The following theorem will be useful in the modeling of the solution.

Theorem 1. The following relations are satisfied for any A =
{
x | P (x)

}
and B =

{
x | Q(x)

}
:

(a) A ∪B =
{
x | P (x) ∨Q(x)

}
(b) A ∩B =

{
x | P (x) ∧Q(x)

}
(c) AC =

{
x | ¬P (x)

}
Demonstration 1. Proof follows directly from fact 3 and definition 6.

This relations may be easily understood, since if A contains all the elements x such that P (x) = 1 and B is

all the elements x such that Q(x) = 1 then it follows –from the definition 6 and the definition of union in the

fact 3– that A ∪ B will have the elements x such that P (x) ∨ Q(x) = 1. The same analysis can be done for

the intersection and complement cases.

Inclusion-exclusion principle

First let consider the cardinality of the power set. This will be useful later in the description of the proposed

solution.
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Fact 4. The cardinality of the power set of U is

∣∣℘(U)
∣∣ = 2|U |

[13].

The inclusion-exclusion principle (IEP) is a mathematical formula that can be used to obtain the cardinality

of the union of finite sets taking into account the cardinality of all possible intersections of the given sets.

Fact 5 (Inclusion-exclusion principle). The cardinality of the union of sets Si∈{1,2,...,n} is

∣∣∣∣∣
n⋃

i=1

Si

∣∣∣∣∣ =
∑

∅6=J∈{1,2,...,n}

(−1)|J |+1

∣∣∣∣∣ ⋂
j∈J

Aj

∣∣∣∣∣
The number of every possible intersection of n sets is the same that the number of subsets of a set of n elements

without counting the empty set. This leads to the following fact taking into account fact 4.

Fact 6. There are

2n − 1

terms in the inclusion-exclusion principle formula for n sets.

This means that an algorithm that calculates the cardinality of the union of n sets by directly using the IEP

have an exponential complexity [15,17].

In the proposed solution the IEP is used to decompose a given query in many smaller sub-queries that will

be issued to the platform search API. In the next section, will be shown how to manage the problem of the

exponential complexity when using this method.

Results and discussion

The problem to solve is: How to get the results number of complex queries to GitHub?

The proposed solution follows a divide and conquer approach as follows:

1. Simplify and decompose complex queries into smaller simple sub-queries.
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Universidad La Salle, Arequipa, Perú
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2. Issue the sub-queries to the server and obtain the results amount of each one.

3. Sum up the results of the sub-queries into one that constitutes the results amount of the initial complex

query.

In the next subsection a mathematical model and formalization of the solution is given.

Mathematical model

Mathematically speaking, the problem to solve is as follows.

Let O be the set of all the objects in the platform (projects, source codes, etc). Let Q : O → {0, 1} be a

predicate that represents the query to issue. Then, the set rQ of all objects that match the query Q is

rQ =
{
o | Q(o)

}
The problem to solve is finding

∣∣rQ∣∣ when the associated Boolean expression given by Q has many compositions

and logical connectives.

The first step of the proposed solution is to simplify the Boolean expression associated to the query. This

may be done by symbolic transformations applying the laws that a Boolean algebra satisfies or also by using

the Quine-McCluskey algorithm. It is known that this solution is not effective when the size of the input

is too big. For this reason, the resultant expression (simplified or not) must be decomposed into various

sub-expressions. For this purpose, the DNF expression is used. By applying theorem 1 it is known that if

Q(o) = Q1(o) ∨Q2(o) ∨ . . . ∨Qn(o) is the DNF then

rQ =
{
o | Q1(o) ∨Q2(o)∨, . . . ,∨Qn(o)

}
= rQ1 ∪ rQ2 ∪ . . . ∪ rQn

where

rQi =
{
o | Qi(o)

}
for each 1 ≤ i ≤ n.

Each Qi(o) is in the form Qi1(o) ∧Qi2(o) ∧ . . . ∧Qim(o). This kind of query can be issued directly to GitHub

because it does not have composition and only have conjunctive connectives. The conjunctives connectives

(AND in the query language of GitHub) can be stripped of the sub-query since GitHub automatically interprets

a tuple of atoms as a conjunction. In this case the is no use of conjunctive or disjunctive connectives in the

query. Nevertheless, the case of the negation is a problem that, for now, cannot be avoided. So, in this case,
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a query must be designed with care in order not to exceed the restriction that GitHub Search API imposes in

the number of operators.

After the sub-queries have been sent, the next step is to find the results amount of the main query by applying

IEP (fact 5). The problem with this approach is that the number of terms –according to fact 6– in IEP formula

with n sets is 2n − 1, which is the number of sub-queries to be issued to the server.

However, each term in IEP is of the form of an intersection. Moreover, the terms in the expression associated

to the DNF are also in the form of intersection. Then, by applying fact 1, that it is possible to reduce each

term of the IEP formula so that some terms might be repeated afterwards. For this reason, it is proposed to

use a cache for storing already issued queries as well as its respective results quantities in order to reduce the

number of issued queries. However, work still need to be done to accelerate the computations of the terms in

the IEP formula.

Solution design

QuantityEr is designed by using the object-oriented paradigm. Care on extension has been taken from the

beginning by assigning a class to each sub-process in the solution. In figure 1 is outlined the class diagram

of the most important classes. The classes are given as abstract base classes, so they must be extended for

a particular problem. Currently, the extensions for solving the problem in the specific case of GitHub are

implemented. Next, it is briefly described each class.

Main: Coordinate the interaction between the Input, Engine and Output classes objects. That is, the main

algorithm is implemented inside this class.

Input: Currently, the queries can be presented to QuantityEr from two sources: the command line and files.

Several queries can be presented to the application in one single execution. The responsibility of this

class is to present these sources as a stream to the Parser. Since the logic of the input is encapsulated

in one class, other kind of inputs may be added in the future like, for example, inputs from the network.

Parser: Translate the queries presented as input to a standard language that can be managed by the other

entities. Since the logic of parsing is encapsulated in one class the syntax of the language used in the

input queries do not need to be like the one expected by GitHub. This may ease the input allowing a

cleaner syntax.

MiddleCode: Represents the intermediate language that the other classes understand. All the queries inside

the application are in this format.
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Engine: Coordinate the interaction between the Decomposer, Cache, Translator and QueryIssuer classes

objects. That is, the algorithm that give the solution to the problem is implemented inside this class.

Decomposer: Decompose a complex query into several smaller simple queries. Currently, the extension using

IEP is implemented.

Cache: Store the results amounts of already issued queries. Currently, an in-memory cache is available as

well as a file-based one.

Translator: Translate a given simple sub-query to an issuable one. Currently, only GitHub is supported but

more platforms may be added in the future.

QueryIssuer: Emit a simple sub-query to the platform and obtain the results amount or inform of an error

if it was the case.

Figure 1. Class diagram of main classes of QuantityEr

Execution example results

In this section we consider a usage example result in order to study the behavior of the application with

complex queries.
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In this case, the queries ask for the amount of source codes that use the classical synchronization mechanisms

defined in the asyncio, multiprocessing and threading Python libraries.

The results are summarized in table 1 and figure 2.

The command lines options to the program, the actual output, the presented queries as well as other execution

example can be found in attached document examples.html17.

Table 1. Execution example results summary. # means quantity. % means percent.

Sub-queries
Cached Issued

No.
Queries
libraries

Amount Total # % # %

01 asyncio 69 053 15 0 0 15 100

02 multiprocessing 159 515 31 0 0 31 100

03 threading 1 451 344 31 0 0 31 100

04
asyncio ∩ mul-
tiprocessing

3 095 16 383 16 353 99.82 30 0.18

05
asyncio ∩
threading

29 658 16 383 16 353 99.82 30 0.18

06
multiprocessing
∩ threading

124 327 31 0 0 31 100

07
asyncio ∩ mul-
tiprocessing ∩
threading

1 947 16 383 16 353 99.82 30 0.18

08
asyncio ∪ mul-
tiprocessing

228 130 511 435 85.13 76 14.87

09
asyncio ∪
threading

1 494 420 511 435 85.13 76 14.87

10
multiprocessing
∪ threading

1 489 850 1 023 930 90.91 93 9.09

11
asyncio ∪ mul-
tiprocessing ∪
threading

1 528 155 16 383 16 185 98.79 198 1.21

17Downloadable from https://github.com/EStog/QuantityEr/blob/v0.1/running/jupyterlab/examples.html
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Figure 2. Sub-queries amount. Total vs Issued

In table 1 and figure 2 can be seen that the number of sub-queries depend on the ability of the Python’s18

19 [18] Sympy20 21 [19] library to simplify the given expression. Also, in this case, the presence of the cache

effects a great reduction on the number of issued queries, especially when the number of sub-queries is big.

Conclusions

In this report a tool, named QuantityEr, to obtain the results number of complex queries to GitHub search API

has been described. The application uses the inclusion-exclusion principle and other mathematical abstractions

to decompose the query in several simple sub-queries. The application uses a cache in order to reduce the

number of sub-queries issued to the server. Even though it is considered that the use of the cache improves the

solution and makes it viable, more work may to be done in order to accelerate the computations of the IEP

formula terms. Moreover, the application may be extended to resolve other restrictions problems in GitHub

and other platforms.

18https://www.python.org/
19https://docs.python.org/3.7/
20https://www.sympy.org/en/
21https://docs.sympy.org/latest/index.html
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