
Revista Innovación y Software
Vol. 6, No. 1, Mes Marzo-Agosto, 2025
ISSN: 2708-0935
Pág. 115-127
https://revistas.ulasalle.edu.p e/innosoft
[13] F. Hutter, L. Kotthoff, and J. Vanschoren, Automated Machine Learning: Methods, Systems, Challenges.
Springer, 2019. [Online]. Available: https://www.automl.org/wp-content/uploads/2019/05/AutoML_
Book.pdf
[14] C. OÑeil, Weapons of Math Destruction: How Big Data Increases Inequa-
lity and Threatens Democracy. New York: Crown, 2016. [Online]. Avai-
lable: https://edisciplinas.usp.br/pluginfile.php/4605464/mod_resource/content/1/%28FFLCH%29%
20LIVRO%20Weapons%20of%20Math%20Destruction%20-%20Cathy%20ONeal.pdf
[15] S. Barocas, M. Hardt, and A. Narayanan, Fairness and Machine Learning: Limitations and Opportunities.
MIT Press, 2023. [Online]. Available: https://fairmlbook.org/pdf/fairmlbook.pdf
[16] Z. C. Lipton, “The mythos of model interpretability: In machine learning, the concept of interpretability
is both important and slippery,” Communications of the ACM, vol. 61, no. 10, pp. 36–43, 2018. [Online].
Available: https://dl.acm.org/doi/epdf/10.1145/3281635
[17] F. Doshi-Velez and B. Kim, “Towards a rigorous science of interpretable machine learning,” arXiv preprint
arXiv:1702.08608, 2017. [Online]. Available: https://arxiv.org/pdf/1702.08608
[18] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, and D. Amodei, “Language
models are few-shot learners,” Advances in Neural Information Processing Systems, vol. 33, pp. 1877–1901,
2020. [Online]. Available: https://arxiv.org/pdf/2005.14165
[19] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirectional
transformers for language understanding,” in Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics, 2019, pp. 4171–4186. [Online]. Avai-
lable: https://eva.fing.edu.uy/pluginfile.php/524749/mod_folder/content/0/BERT%20Pre-training%
20of%20Deep%20Bidirectional%20Transformers%20for%20Language%20Understanding.pdf
[20] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus, “Intriguing
properties of neural networks,” in Proceedings of the International Conference on Learning Representations,
2014. [Online]. Available: https://arxiv.org/pdf/1312.6199
[21] L. Zhou, S. Pan, J. Wang, and A. V. Vasilakos, “Machine learning on big data: Opportunities and
challenges,” Elsevier, vol. 237, pp. 350–361, 2017. [Online]. Available: https://pdf.sciencedirectassets.
com/271597/1-s2.0-S0925231217X00106/1-s2.0-S0925231217300577/am.pdf
Facultad de Ingeniería
Universidad La Salle, Arequipa, Perú
facin.innosoft@ulasalle.edu.pe
126