[10] TOTP: Time-Based One-Time Password Algorithm. https://goo.gl/9Ba5hv
[11] S. Latifi, Ed., 17th International Conference on Information Technology–New Generations
(ITNG 2020). Cham: Springer International Publishing, 2020. Accedido el 17 de noviembre
de 2022. [En línea]. Disponible: https://doi.org/10.1007/978-3-030-43020-7
[12] S. K. Shammi, S. Sultana, M. S. Islam y A. Chakrabarty, "Low Latency Image Processing of
Transportation System Using Parallel Processing co-incident Multithreading (PPcM)", en 2018
Joint 7th International Conference on Informatics, Electronics & Vision (ICIEV) and 2018 2nd
International Conference on Imaging, Vision & Pattern Recognition (icIVPR), Kitakyushu,
Japan, 25–29 de junio de 2018. IEEE, 2018. Accedido el 17 de noviembre de 2022. [En
línea]. Disponible: https://doi.org/10.1109/iciev.2018.8640957
[13] Kaur, S., Kaur, G., & Shabaz, M. (2022). A Secure Two-Factor Authentication Framework in
Cloud Computing. Security and Communication Networks, 2022.
https://doi.org/10.1155/2022/7540891
[14] RFC 4226 HOTP: An HMAC-based One-Time Password Algorithm (2005).
https://goo.gl/wxHBvT
[15] I. Sluganovic, M. Roeschlin, K. B. Rasmussen y I. Martinovic, "Analysis of Reflexive Eye
Movements for Fast Replay-Resistant Biometric Authentication", ACM Transactions on Privacy
and Security, vol. 22, n.º 1, pp. 1–30, enero de 2019. Accedido el 17 de noviembre de 2022.
[En línea]. Disponible: https://doi.org/10.1145/3281745
[16] L. Monastyrskii, V. Lozynskii, Y. Boyko y B. Sokolovskii, "Fingerprint recognition in
inexpensive biometric system", Electronics and Information Technologies, vol. 9, 2018.
Accedido el 17 de noviembre de 2022. [En línea]. Disponible:
https://doi.org/10.30970/eli.9.120
[17] A. Ometov, S. Bezzateev, N. Makitalo, S. Andreev, ¨T. Mikkonen, and Y. Koucheryavy,
“Multi-factor authentication: a survey,” Cryptography, vol. 2, no. 1, pp. 1–31, 2018
[18] H. AYDIN, "The Importance of Cyber Security in Management Information Systems (MIS)",
Bilgisayar Bilimleri ve Teknolojileri Dergisi, octubre de 2022. Accedido el 17 de noviembre de
2022. [En línea]. Disponible: https://doi.org/10.54047/bibted.1138252
[19] M. Meroni, F. Waldner, L. Seguini, H. Kerdiles y F. Rembold, "Yield forecasting with machine
learning and small data: What gains for grains?", Agricultural and Forest Meteorology, vol.