Referencias
[1] X. Yang, B. Dindoruk and L. Lu, “A comparative analysis of bubble point pressure prediction
using advanced machine learning algorithms and classical correlations”, Journal of Petroleum
Science and Engineering, vol. 185, 106598, 2020. Available:
https://doi.org/10.1016/j.petrol.2019.106598.
[2] M. M. Almashan, Z. Arsalan, Y. Narusue and H. Morikawa, “Estimating Pressure-Volume-
Temperature Properties of Crude Oil Systems Using Boosted Decision Tree Regression”,
Journal of the Japan Petroleum Institute, vol. 65, nº. 6, pp. 221-232, 2022.
Available: https://doi.org/10.1627/jpi.65.221.
[3] K. Ghorayeb, A. Mawlod, A. Maarouf, Q. Sami, N. El Droubi, R. Merrill, O. El Jundi and H.
Mustapha, “Chain-based machine learning for full PVT data prediction”, Journal of Petroleum
Science and Engineering, vol. 208, Part D, 109658, 2022. Available:
https://doi.org/10.1016/j.petrol.2021.109658.
[4] A. M. Elsharkawy, "Modeling the Properties of Crude Oil and Gas Systems Using RBF Network."
Paper presented at the SPE Asia Pacific Oil and Gas Conference and Exhibition, Perth, Australia,
October 1998. Available: https://doi.org/10.2118/49961-MS.
[5] R. B. Gharbi and A. M. Elsharkawy, “Neural network model for estimating the PVT properties
of Middle East crude oils”. Paper presented at the Middle East Oil Show and Conference,
Bahrain, March 1997. Available: https://doi.org/10.2118/37695-MS.
[6] R. B. Gharbi, A. M. Elsharkawy and M. Karkoub, “Universal Neural-Network-Based Model for
Estimating the PVT Properties of Crude Oil Systems”. Energy Fuels, vol. 13, pp. 454–458,
1999. Available: https://doi.org/10.1021/ef980143v.
[7] S. Alatefi and A. M. Almeshal. “A New Model for Estimation of Bubble Point Pressure Using a
Bayesian Optimized Least Square Gradient Boosting Ensemble”. Energies, vol. 14, nº. 9, pp.
2653, 2021. Available: https://doi.org/10.3390/en14092653.
[8] A. Sircar, K. Yadav, K. Rayavarapu, N. Bist and H. Oza. “Application of machine learning and
artificial intelligence in oil and gas industry”. Petroleum Research, vol. 6, n°. 4, pp. 379-391,
2021. Available: https://doi.org/10.1016/j.ptlrs.2021.05.009.
[9] M. Ahmadi, M. Pournik and S. Shadizadeh. “Toward connectionist model for predicting bubble
point pressure of crude oils: Application of artificial intelligence”. Petroleum, vol. 1, n°. 4, pp.
307-317, 2015. Available: https://doi.org/10.1016/j.petlm.2015.08.003.