Innovación y Software https://revistas.ulasalle.edu.pe/innosoft <p>Revista científica, con sistema de arbitraje por pares académicos, especializada en Ciencia de la Computación e Informática. Es publicada por la <a title="Universidad La Salle" href="http://www.ulasalle.edu.pe" target="_blank" rel="noopener">Universidad La Salle</a> de Arequipa, con periodicidad semestral y acepta el envío de artículos durante todo el año. Actualmente, la revista está indexada/registrada en: Google Scholar, ResearchBib, OpenAIRE, CiteFactor, BASE, DRJI, ICI World of Journals, Scientific Indexing Services entre otras bases de datos. ISSN: 2708-0927. ISSN-e: 2708-0935.&nbsp;&nbsp;</p> Universidad La Salle es-ES Innovación y Software 2708-0927 <p>Los autores ceden en exclusiva el derecho de publicación de su artículo a la&nbsp;Revista Innovación y Software, que podrá editar o modificar formalmente el texto aprobado para cumplir con las normas editoriales propias y con los estándares gramaticales universales, antes de su publicación; asimismo, nuestra revista podrá traducir los manuscritos aprobados a cuantos idiomas considere necesario y difundirlos en varios países, dándole siempre el reconocimiento público al autor o autores de la investigación.</p> Modelo predictivo para la detección temprana de estudiantes con alto riesgo de deserción académica https://revistas.ulasalle.edu.pe/innosoft/article/view/40 <p>Se comparan los resultados de 4 modelos predictivos, de regresión logística, árboles de decisión, KNN y una red neuronal para predecir la deserción académica de estudiantes en la Universidad Nacional Intercultural de la Amazonía, aplicado a un dataset extraído de la base de datos del sistema de gestión académica de la universidad, que contiene datos socioeconómicos y de rendimiento académico los cuales fueron procesados y formateados utilizando técnicas de onehotencoding para así poder&nbsp; aplicar los modelos predictivos ya mencionados. Para el procesamiento y formateo de datos se utilizó consultas Transac Sql y la aplicación de los modelos predictivos se hizo a través del Software Knime y utilizando Python a través de Google Colab. Los resultados obtenidos al aplicar 4 modelos predictivos son muy buenos ya que todos superaron el 80% de Accuracy, lo cual garantiza que puedan ser puestos en producción para el beneficio de la universidad y así pueda tomar mejores decisiones a la hora de abordar la deserción académica. Se concluye que aplicar un modelo predictivo en las universidades para la detección temprana de estudiantes con alto riesgo de deserción académica es viable y muy beneficioso para que las universidades a través de sus gestores académicos puedan aplicar estrategias mas focalizadas para reducir sus índices de deserción académica.</p> Kevin Rivera Vergaray Derechos de autor 2021 Innovación y Software https://creativecommons.org/licenses/by/4.0 2021-09-30 2021-09-30 2 2 6 13 Predicción de mortalidad a causa del Covid 19 en Perú utilizando redes neuronales artificiales https://revistas.ulasalle.edu.pe/innosoft/article/view/43 <p>Con el desarrollo de la pandemia en Perú, la cantidad de fallecidos ha ido en aumento y lamentablemente no se han tomado las medidas adecuadas, esto por no tener una herramienta que nos permita saber la cantidad de fallecidos posibles en un tiempo determinado. El objetivo del presente artículo es proponer una herramienta capaz de predecir la cantidad de fallecidos por COVID-19 en función del tiempo. La metodología utilizada fue redes neuronales artificiales utilizando series temporales con información obtenida del Ministerio de Salud del estado peruano a través de su portal de datos abiertos. Los resultados alcanzados tuvieron un error cuadrático medio de 0.0037 y pérdida de 0.0480. Los resultados obtenidos a lo largo del artículo confirman la validez de esta herramienta y la efectividad en la predicción de la cantidad de fallecidos a causa del COVID 19.</p> Cesar Mayta Avalos Jesús Cristian Valdivia Mamani Fernando Rosales Castilla Milca Gines Colana Derechos de autor 2021 Innovación y Software https://creativecommons.org/licenses/by/4.0 2021-09-30 2021-09-30 2 2 14 26 Propuesta de un plan de seguridad de la información para incrementar la fiabilidad de datos en una financiera https://revistas.ulasalle.edu.pe/innosoft/article/view/39 <p>La entidad financiera tiene como función principal ofrecer sus servicios de colocación de tarjetas, préstamos, etc., hacia los clientes que soliciten en sus diferentes establecimientos. Ante ello se identificó que en el banco existen actividades que están generando mal manejo de la información por parte del personal hacia los clientes lo cual está ocasionando reclamos de los mismos por inconsistencia de los datos que trae como consecuencia la desafiliación de sus servicios. Por ese motivo se desarrolló una propuesta de un plan de seguridad de la información en los procesos y áreas del banco Ripley, teniendo como objetivo el incremento de la fiabilidad de sus datos, logrando los tres principios para un SGSI como son disponibilidad, integridad y confidencialidad. Para lograr dicho objetivo se seleccionó las normas ISO/IEC 27001 y 27002 para aplicar los controles de la propuesta del plan de seguridad de la información en el banco Ripley, quedando claramente establecidos los responsables y la información que se maneja en cada una de los procesos y áreas. Como resultado se realizó el alcance del plan, así como definir las políticas, análisis de gestión de riesgos, se dio prioridad al manejo de la información por áreas, además se analizó los activos del banco donde se garantice la fiabilidad de los datos, luego se definió el plan aplicando los controles de la ISO/IEC 27002. Se concluyó en definir los indicadores para evaluar la propuesta del plan de seguridad de la información para incrementar la fiabilidad de sus datos.</p> Wilmer Aufredy Apaza Chávez Derechos de autor 2021 Innovación y Software https://creativecommons.org/licenses/by/4.0 2021-09-30 2021-09-30 2 2 27 43 Aplicación de regresión logística para la predicción de demanda por especialidad médica en consulta externa hospitalaria https://revistas.ulasalle.edu.pe/innosoft/article/view/45 <p>En este trabajo se realizó el análisis de la información producto de la atención de pacientes en el servicio de consulta externa. Se han revisado trabajos que guardan relación con las metodologías posibles de utilizar, antes de la elección de una en particular. Posteriormente, se ha justificado y aplicado la metodología de regresión logística para evaluar, clasificar y pronosticar los resultados esperados conforme al objetivo trazado. En el Hospital Regional de Moquegua, desde el inicio de la emergencia sanitaria por el Covid-19, se suspendió la atención en el servicio de consulta externa, vale decir desde Marzo del 2020 a Junio 2021 no se tiene información de cuánto hubiese sido la demanda por especialidad en dicho servicio. El objetivo del trabajo es predecir, en base a variables de edad y sexo, la cantidad de pacientes de sexo femenino que solicitarán una cita para las especialidades de consulta externa, en un período de tiempo. Para la resolución del objetivo planteado, se aplicó el modelo de regresión logística de scikit-learn que, en un inicio ha permitido clasificar y determinar el grupo de importancia en base al cual está orientado nuestro objetivo, tomando como variables independientes y relevantes: el sexo y la edad. Los resultados iniciales obtenidos del procedimiento del modelo no mostraron correspondencia real a la predicción esperada . Las conclusiones determinan que el modelo propuesto requiere la inclusión de otras variables de entrada.</p> Rene Aquino Arcata Ronald Cuevas Machaca Luis Godoy Montoya Heber Rodríguez Puma Derechos de autor 2021 Innovación y Software https://creativecommons.org/licenses/by/4.0 2021-09-30 2021-09-30 2 2 44 59 Predicción de hipertensión arterial a través de un sistema de regresión logística https://revistas.ulasalle.edu.pe/innosoft/article/view/44 <p>En el Perú y el mundo entero la hipertensión es una enfermedad que puede avanzar sin manifestar ningún síntoma o éstos ser muy leves. Se puede tener hipertensión arterial y no sentir ninguna manifestación, la hipertensión arterial es un serio problema de salud pública en países en desarrollo como el nuestro: según la Encuesta Demográfica y de Salud Familiar de 2017, aunque la prevalencia de hipertensión en personas de 15 años a más se habría reducido de 14,8 % en 2014, a 13,6 %, implica que más de 3 millones de peruanos viven con hipertensión arterial. Por ese motivo nuestro objetivo es el rápido diagnóstico&nbsp; de esta enfermedad silenciosa, en el presente trabajo se utilizó&nbsp; el sistema de regresión logística, para el cual se posee un dataset de 5615 registros analizados. Este artículo presenta la posibilidad de detectar una enfermedad como la hipertensión arterial basado en inteligencia artificial, ya que este mal ha ido aumentando en los últimos años. Por ese motivo el objetivo es predecir de manera rápida un posible diagnóstico de hipertensión arterial, para ello se analizó un dataset de 5615 registros en la aplicación web Jupyter Notebook, estableciendo 9 variables de entrada y 1 de salida, además se utilizó el sistema de regresión logística, tratamientos de datos missing y outlaiers, gráficas de variables, obteniendo como resultado una precisión media aceptable del 87%.</p> Cynthia Mayumi Tesillo Gomez Yuri Alexander Escobar Arcaya Edwin Daniel León Gutierrez Derechos de autor 2021 Innovación y Software https://creativecommons.org/licenses/by/4.0 2021-09-30 2021-09-30 2 2 60 74 Sistema para proponer la nota final de los estudiantes mediante Redes Neuronales https://revistas.ulasalle.edu.pe/innosoft/article/view/46 <p>Debido al problema recurrente presentado en los alumnos en lo que se refiere a su desempeño académico,se desarrolló una aplicación de redes neuronales con el objetivo de ayudar al docente, ya que esta es capaz de dar resultados de las notas finales de los alumnos y ayudará al docente a comprender el por qué de los resultados, puesto que esta red neuronal toma en cuenta diferentes factores que conlleva al alumno a tener una nota aprobatoria o desaprobatoria. Para obtener los resultados se trabajó en el entrenamiento de la red neuronal mediante el modelo de clasificación el cual muestra en el resultado la cantidad de alumnos aprobados o desaprobados y el otro modelo de regresión el cual predice la nota de un alumno dadas las características de su encuesta inicial, ambos modelos fueron de gran ayuda para predecir el comportamiento de los datos.</p> Kleber Ernesto Baldarrago Salas Erika Cayllahua Chicaña Fanny Lorena Lorenzo Quilla Maria Quijia Alvarez Derechos de autor 2021 Innovación y Software https://creativecommons.org/licenses/by/4.0 2021-09-30 2021-09-30 2 2 75 91 Selección de una red social para apoyar la docencia universitaria empleando computación con palabras https://revistas.ulasalle.edu.pe/innosoft/article/view/47 <p>Las redes sociales han impactado la sociedad, a tal punto que en muchas ocasiones se prioriza más estar al tanto de ellas que de cualquier otra aplicación en el móvil, tablet, o laptop. Por otro lado, la llegada de la enfermedad covid-19 también ha incidido en el modo de actuación de los estudiantes, profesores y el propio sistema de enseñanza. El presente trabajo tiene como objetivo seleccionar la red social más adecuada para el apoyo a la enseñanza superior, a través de la computación con palabras, utilizada para realizar el proceso de computación y razonamiento. Además, para simular los diferentes modelos, es usado el programa FLINTSTONES. Finalmente, se exponen los resultados alcanzados por cada una de las tres redes sociales analizadas: Telegram, WhatsApp y Facebook.</p> Dargel Veloz Morales Laritza González Marrero Derechos de autor 2021 Innovación y Software https://creativecommons.org/licenses/by/4.0 2021-09-30 2021-09-30 2 2 92 105