Revista de ciencia de la Complejidad
RefeRencias
Agrawal, R., Imieliński, T., & Swami, A. (1993).
28-39.
“
Mining association rules between sets of
items in large databases”. Proceedings of the
993 ACM SIGMOD International Conference
Doshi-Velez, F., & Kim, B. (2017). “Towards
a rigorous science of interpretable machine
learning”. arXiv:1702.08608.
1
on Management of Data, 207-216.
Floridi, L. (2019). The Logic of Information: A
Theory of Philosophy as Conceptual Design.
Oxford University Press.
Barabási,A. L. (2003). Linked: How Everything
Is Connected to Everything Else and What It
Means for Business, Science, and Everyday
Life. Penguin.
Floridi, L., & Cowls, J. (2019). “A unified frame-
work of five principles for AI in society”. Har-
vard Data Science Review, 1(1).
Bar-Yam, Y. (2003). Dynamics of Complex
Systems. Westview Press.
Goertzel, B., & Pennachin, C. (2007). Artificial
General Intelligence. Springer.
Bostrom, N. (2014). Superintelligence: Paths,
Dangers, Strategies. Oxford University Press.
Goodfellow, I., Bengio, Y., & Courville, A.
Brambilla, M., Ferrante, E., Birattari, M., &
Dorigo, M. (2013). “Swarm robotics: a review
from the swarm engineering perspective”.
Swarm Intelligence, 7(1), 1-41.
(2016). Deep Learning. MIT Press.
Holland, J. H. (1992). Adaptation in Natural
and Artificial Systems. MIT Press.
Bryson, J. J., & Theodorou, A. (2019). “How
society can maintain human-centric artificial
intelligence”. In Human-Centered Digitaliza-
tion and Services (pp. 305-323). Springer.
Holland, J. H. (2014). Complexity: A Very Short
Introduction. Oxford University Press.
Kennedy, J., & Eberhart, R. (1995). “Particle
swarm optimization”. Proceedings of ICNN’95
- International Conference on Neural Net-
works, 4, 1942-1948.
Camazine, S., Deneubourg, J. L., Franks, N.
R., Sneyd, J., Theraulaz, G., & Bonabeau, E.
(
2003). Self-Organization in Biological Sys-
Kitchin, R. (2014). The Data Revolution: Big
Data, Open Data, Data Infrastructures and
Their Consequences. Sage.
tems. Princeton University Press.
Chen, J., Li, Y., & He, K. (2018). “Reinforce-
ment Learning in Financial Markets”. The
Journal of Finance and Data Science, 4(1),
LeCun, Y., Bengio, Y., & Hinton, G. (2015).
“Deep learning”. Nature, 521(7553), 436-444.
1
-8.
Mitchell, M. (2009). Complexity: A Guided
Tour. Oxford University Press.
Dorigo, M., & Stützle, T. (2004). Ant Colony
Optimization. MIT Press.
Mittelstadt, B. D., Allo, P., Taddeo, M., Wa-
chter, S., & Floridi, L. (2016). “The ethics of
algorithms: Mapping the debate”. Big Data &
Society, 3(2).
Dorigo, M., Birattari, M., & Stutzle, T. (2006).
“Ant Colony Optimization: Artificial Ants as a
Computational Intelligence Technique”. IEEE
Computational Intelligence Magazine, 1(4),
7
6