COMPLEXITY, ARTIFICIAL INTELLIGENCE AND ETHICS

Keywords: Complexity Sciences, Artificial Intelligence, complex systems modeling, complex ethics

Abstract

The relationship between Artificial Intelligence (AI) and Complexity Sciences is increasingly crucial in the scientific and technological fields. This essay examines how AI and Complexity Sciences mutually benefit each other and promise to revolutionize our understanding of complex systems. Complexity Sciences investigate how interactions among parts of a system generate emergent behaviors that are not predictable from the individual components, encompassing ecological networks, economies, biological, and social systems. AI, with algorithms capable of performing tasks that require human intelligence, such as learning and adaptation, significantly contributes to this field. Complexity Sciences provide a theoretical framework for developing more advanced and adaptive AI, crucial for autonomous systems in dynamic environments. However, this synergy also poses novel ethical and social challenges, necessitating the application of complex criteria to AI ethics.

Downloads

Download data is not yet available.

References

Agrawal, R., Imieliński, T., & Swami, A. (1993). “Mining association rules between sets of items in large databases”. Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, 207-216. DOI: https://doi.org/10.1145/170035.170072

Barabási, A. L. (2003). Linked: How Everything Is Connected to Everything Else and What It Means for Business, Science, and Everyday Life. Penguin.

Bar-Yam, Y. (2003). Dynamics of Complex Systems. Westview Press.

Bostrom, N. (2014). Superintelligence: Paths, Dangers, Strategies. Oxford University Press.

Brambilla, M., Ferrante, E., Birattari, M., & Dorigo, M. (2013). “Swarm robotics: a review from the swarm engineering perspective”. Swarm Intelligence, 7(1), 1-41. DOI: https://doi.org/10.1007/s11721-012-0075-2

Bryson, J. J., & Theodorou, A. (2019). “How society can maintain human-centric artificial intelligence”. In Human-Centered Digitalization and Services (pp. 305-323). Springer. DOI: https://doi.org/10.1007/978-981-13-7725-9_16

Camazine, S., Deneubourg, J. L., Franks, N. R., Sneyd, J., Theraulaz, G., & Bonabeau, E. (2003). Self-Organization in Biological Systems. Princeton University Press.

Chen, J., Li, Y., & He, K. (2018). “Reinforcement Learning in Financial Markets”. The Journal of Finance and Data Science, 4(1), 1-8. DOI: https://doi.org/10.1016/j.jfds.2015.03.001

Dorigo, M., & Stützle, T. (2004). Ant Colony Optimization. MIT Press. DOI: https://doi.org/10.7551/mitpress/1290.001.0001

Dorigo, M., Birattari, M., & Stutzle, T. (2006). “Ant Colony Optimization: Artificial Ants as a Computational Intelligence Technique”. IEEE Computational Intelligence Magazine, 1(4), 28-39. DOI: https://doi.org/10.1109/CI-M.2006.248054

Doshi-Velez, F., & Kim, B. (2017). “Towards a rigorous science of interpretable machine learning”. arXiv:1702.08608.

Floridi, L. (2019). The Logic of Information: A Theory of Philosophy as Conceptual Design. Oxford University Press. DOI: https://doi.org/10.1093/oso/9780198833635.001.0001

Floridi, L., & Cowls, J. (2019). “A unified framework of five principles for AI in society”. Harvard Data Science Review, 1(1). DOI: https://doi.org/10.1162/99608f92.8cd550d1

Goertzel, B., & Pennachin, C. (2007). Artificial General Intelligence. Springer. DOI: https://doi.org/10.1007/978-3-540-68677-4

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.

Holland, J. H. (1992). Adaptation in Natural and Artificial Systems. MIT Press. DOI: https://doi.org/10.7551/mitpress/1090.001.0001

Holland, J. H. (2014). Complexity: A Very Short Introduction. Oxford University Press. DOI: https://doi.org/10.1093/actrade/9780199662548.001.0001

Kennedy, J., & Eberhart, R. (1995). “Particle swarm optimization”. Proceedings of ICNN'95 - International Conference on Neural Networks, 4, 1942-1948. DOI: https://doi.org/10.1109/ICNN.1995.488968

Kitchin, R. (2014). The Data Revolution: Big Data, Open Data, Data Infrastructures and Their Consequences. Sage. DOI: https://doi.org/10.4135/9781473909472

LeCun, Y., Bengio, Y., & Hinton, G. (2015). “Deep learning”. Nature, 521(7553), 436-444. DOI: https://doi.org/10.1038/nature14539

Mitchell, M. (2009). Complexity: A Guided Tour. Oxford University Press. DOI: https://doi.org/10.1093/oso/9780195124415.001.0001

Mittelstadt, B. D., Allo, P., Taddeo, M., Wachter, S., & Floridi, L. (2016). “The ethics of algorithms: Mapping the debate”. Big Data & Society, 3(2). DOI: https://doi.org/10.1177/2053951716679679

Newman, M. (2010). Networks: An Introduction. Oxford University Press. DOI: https://doi.org/10.1093/acprof:oso/9780199206650.003.0001

Noble, S. U. (2018). Algorithms of Oppression: How Search Engines Reinforce Racism. NYU Press. DOI: https://doi.org/10.2307/j.ctt1pwt9w5

Page, S. E. (2007). The Difference: How the Power of Diversity Creates Better Groups, Firms, Schools, and Societies. Princeton University Press. DOI: https://doi.org/10.1515/9781400830282

Provost, F., & Fawcett, T. (2013). Data Science for Business: What You Need to Know about Data Mining and Data-Analytic Thinking. O'Reilly Media.

Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., & Prabhat (2019). “Deep learning and process understanding for data-driven Earth system science”. Nature, 566(7743), 195-204. DOI: https://doi.org/10.1038/s41586-019-0912-1

Schellnhuber, H. J. (1999). “Earth system analysis and the second Copernican revolution”. Nature, 402(6761), C19-C23. DOI: https://doi.org/10.1038/35011515

Sutton, R. S., & Barto, A. G. (2018). Reinforcement Learning: An Introduction. MIT Press.

Taleb, N. N. (2012). Antifragile: Things That Gain from Disorder. Random House.

Received: 2024-06-30
Published: 2024-06-30
How to Cite
Viguri Axpe, M. R. (2024). COMPLEXITY, ARTIFICIAL INTELLIGENCE AND ETHICS. Iberoamerican Journal of Complexity and Economics Sciences, 2(2), 63-77. https://doi.org/10.48168/ricce.v2n2p63