CHATGPT EN LA ENSEÑANZA INICIAL DE PROGRAMACIÓN: DINÁMICAS EMERGENTES EN UN ECOSISTEMA DE APRENDIZAJE COMPLEJO

Keywords: programming, ChatGPT, complexity, self-directed learning, Python, higher education

Abstract

Learning to program for the first time often sparks curiosity and, at the same time, a certain amount of tension. For many university students, encountering code means entering uncharted territory where logic operates according to different rules and mistakes are a constant companion. Some approach it with enthusiasm; others, with caution. What almost all share is the feeling of undergoing a learning process unlike anything they are used to. In the midst of this process, generative artificial intelligence tools, such as ChatGPT, have begun to be incorporated. Their presence changes the dynamic: they allow students to ask questions without feeling judged, review an idea before implementing it, or delve into a concept that wasn't clear in class. For some students, it was a kind of silent guide. For others, a resource they only turned to when they were clearly stuck. This study explores that experience in students who began programming with Python. The analysis is grounded in complexity theory, which understands learning as a living process, with advances, setbacks, discoveries, and moments of doubt. There wasn't just one way to use the tool. There were different learning paths: some marked by dependence, others by increasing autonomy. And, in several cases, something changed in the relationship with error: it ceased to be felt as failure and began to be seen as part of the learning process. The final reflections address the pedagogical and ethical implications of integrating generative systems into introductory programming courses, recognizing that the use of these tools not only modifies the practice but also the way students relate to learning itself.

Downloads

Download data is not yet available.

References

• Boekaerts, M. (2021). Self-regulated learning: A new concept embraced by researchers, policy makers, educators, teachers, and students. Educational Psychology Review, 33(2), 307–325. https://www.sciencedirect.com/science/article/abs/pii/S0959475296000151
• Capra, F., & Luisi, P. L. (2014). The systems view of life: A unifying vision. Cambridge University Press. https://www.igi-global.com/pdf.aspx?tid=123443&ptid=119047&ctid=17&-t=the+systems+view+of+life:+a+unifying+vision&isxn=9781466680791
• Ciprés, M. S. (2024). ChatGPT como herramienta de apoyo al aprendizaje en la educación superior. Tecnología, Ciencia y Educación. https://doi.org/10.51302/tce.2024.19083
• Davis, B., & Sumara, D. (2006). Complexity and education: Inquiries into learning, teaching, and research. Lawrence Erlbaum Associates. https://dl.acm.org/doi/10.1145/3483843
• Duran, R., Zavgorodniaia, A., & Sorva, J. (2022). Cognitive Load Theory in Computing Education Research: A Review. ACM Transactions on Computing Education, 22(4), Article 40.
• Fuentes-Rosado, J. I., & Moo-Medina, M. (2017). Dificultades de aprender a programar. Revista Educación en Ingeniería, 12(24), 76–82. https://doi.org/10.26507/rei.v12n24.728
• Gunawan, A., & Wiputra, R. (2024, December). Exploring the Impact of Generative AI on Personalized Learning in Higher Education. In 2024 IEEE 12th Conference on Systems, Process & Control (ICSPC) (pp. 280-285). IEEE. https://ieeexplore.ieee.org/abstract/document/10862366
• Joaqui, D., & Ortiz, D. N. (2020). La educación bajo el signo de la complejidad. Sophía, 29, 157–180. https://doi.org/10.17163/soph.n29.2020.05
• Kasneci, E., Sessler, K., & Bannert, M. (2023). ChatGPT for good? On opportunities and challenges of large language models for education. Learning and Instruction, 86, 101748. https://www.sciencedirect.com/science/article/pii/S0959475296000151
• Matthew, B., Mohamad, R., Truong-Huu, T., Olorogun, L., & Endres, H. (2024). Large Language Models as Personal Tutors for Personalized Educational Pathways: A New Frontier in Education. https://www.researchgate.net/publication/379246999
• Monsálvez, J. C., García-Ortega, J., (2017). Python como primer lenguaje de programación textual en la Enseñanza Secundaria. Recuperado de https://www.redalyc.org/pdf/5355/535554766009.pdf
• Posso-Pacheco, R. J., et al. (2025). El rol del docente en la era de la inteligencia artificial. Revista Mentor. https://revistamentor.ec/index.php/mentor/article/view/10185
• Ramírez Moreno, H. B., Osuna-Millán, N., & Niebla Zatarain, J. M. (2021). La Educación en México como un sistema complejo. Revista Ciencias de la Complejidad, 2(Edición Especial), 21–25. https://doi.org/10.48168/ccee012021-002
• Renninger, K. A., & Hidi, S. (2023). The power of interest for motivation and learning (2nd ed.). Routledge.
• Solís González, R., Guzmán Arredondo, A., & Xochitototl Nava, V. (2024). Análisis del sistema educativo mexicano desde la perspectiva de la complejidad. EDUCIENCIA, 9(2), 18–27. https://doi.org/10.29059/educiencia.v9i2.283
• Veerasamy, A. K., D’Souza, D., & Laakso, M. J. (2016). Identifying novice student programming misconceptions and errors from summative assessments. Journal of Educational Technology Systems, 45(1), 50–73. Identifying Novice Student Programming Misconceptions and Errors From Summative Assessments - Ashok Kumar Veerasamy, Daryl D’Souza, Mikko-Jussi Laakso, 2016
• Yang, A. C. M., Lin, J.-Y., Lin, C.-Y., & Ogata, H. (2024). Enhancing Python learning with PyTutor: Efficacy of a ChatGPT-based intelligent tutoring system in programming education. Computers and Education: Artificial Intelligence, 7, 100309. https://doi.org/10.1016/j.caeai.2024.100309
• Zhou, M., Brown, D., & Thao, M. (2020). Educational learning theories (2nd ed.). Open Educational Resource. https://oer.galileo. usg.edu/education-textbooks/1
Received: 2025-12-30
Published: 2025-12-30
How to Cite
Manrique Rojas, E. (2025). CHATGPT EN LA ENSEÑANZA INICIAL DE PROGRAMACIÓN: DINÁMICAS EMERGENTES EN UN ECOSISTEMA DE APRENDIZAJE COMPLEJO. Iberoamerican Journal of Complexity and Economics Sciences, 3(4), 71-82. https://doi.org/10.48168/ricce.v3n4p71