YOLOv8-Based Model for Solid Waste Detection

Keywords: Detection, Deep Learning, Solid Waste, YOLO

Abstract

The primary focus of this article was to employ Ultralytics technology, specifically YOLOv8, in object recognition. This involved utilizing supervised learning and other machine learning techniques. The article took into consideration the definitions of object detection and model training to effectively categorize solid waste, thereby facilitating recycling efforts. Following this, each object class was manually identified using the LabelImg tagger, considering the positions of the objects within the images. This approach led to the analysis of 1517 images and produced notably high-quality and significant results.

Downloads

Download data is not yet available.

References

M. Razzok, A. Badri, I. E. Mourabit, Y. Ruichek, and A. Sahel, “Pedestrian detection under weather conditions using conditional generative adversarial network,” Int J Artif Intell, vol. 12, no. 4, pp. 1557– 1568, 2023.

U. Sirisha, S. P. Praveen, P. N. Srinivasu, P. Barsocchi, and A. K. Bhoi, “Statistical analysis of design aspects of various yolo-based deep learning models for object detection,” International Journal of Computational Intelligence Systems, vol. 16, no. 1, p. 126, 2023.

M. G. Dinesh, N. Bacanin, S. S. Askar, and M. Abouhawwash, “Diagnostic ability of deep learning in detection of pancreatic tumour,” Scientific Reports, vol. 13, no. 1, p. 9725, 2023.

K. Niu and Y. Yan, “A small-object-detection model based on improved yolov8 for uav aerial images,” in 2023 2nd International Conference on Artificial Intelligence and Intelligent Information Processing (AIIIP). IEEE, 2023, pp. 57–60.

“Región natural año 5. residuos sólidos,” 2012. [Online]. Available: https://www.inei.gob.pe/media/MenuRecursivo/publicaciones_digitales/Est/Lib1756/cap05.pdf

A. F. M. Rendón, “Caracterización de residuos sólidos,” Cuaderno activa, vol. 4, pp. 67–72, 2012.

D. Horcajada Jiménez, “Metodología para la detección de objetos en imágenes basada en la librería yolo con aplicación a la detección de carros,” Master’s thesis, Unknown, 2021.

N. V. Kumsetty, A. B. Nekkare, S. Kamath S, and A. Kumar M, “Trashbox: Trash detection and classification using quantum transfer learning,” 2022.

“Wfdownloader app - free bulk image downloader and multi-purpose bulk downloader,” 2023. [Online]. Available: https://www.wfdownloader.xyz/

G. Boesch, “Labelimg for image annotation - viso.ai,” 2022. [Online]. Available: https://viso.ai/ computer-vision/labelimg-for-image-annotation/

Ultralytics, “Object detection datasets overview,” 2023. [Online]. Available: https://docs.ultralytics.com/ es/datasets/detect/#supported-datasets

Y. M. Tang, W. T. Kuo, and C. K. Lee, “Real-time mixed reality (mr) and artificial intelligence (ai) object recognition integration for digital twin in industry 4.0,” Scopus, 2023.

J. Hui, “map (mean average precision) for object detection,” 2018. [Online]. Available: https://jonathan-hui.medium.com/map-mean-average-precision-for-object-detection-45c121a31173 [14] Ultralytics, “Yolo performance metrics,” 2023. [Online]. Available: https://docs.ultralytics.com/es/guides/ yolo-performance-metrics/

——, “Yolov8,” 2023. [Online]. Available: https://docs.ultralytics.com/es/models/yolov8/ #performance-metrics

——, “Train,” 2023. [Online]. Available: https://docs.ultralytics.com/es/modes/train/ [17] J. Brownlee, “What is the difference between a batch and an epoch in a neural network,” Machine Learning Mastery, vol. 20, 2018.

Ultralytics, “Val,” 2023. [Online]. Available: https://docs.ultralytics.com/es/modes/val/

Received: 2024-05-18
Accepted: 2024-07-26
Published: 2024-09-30
How to Cite
[1]
R. A. Guevara Saldaña, M. I. Díaz Tomás, and M. Torres Villanueva, “YOLOv8-Based Model for Solid Waste Detection ”, Innov. softw., vol. 5, no. 2, pp. 104-113, Sep. 2024.
Section
Journal papers

Most read articles by the same author(s)