Artificial intelligence in predictive IT incident management

Keywords: IT incidents, artificial intelligence, predictive management

Abstract

This systematic review synthesizes the literature on the application of Artificial Intelligence (AI) in predictive incident management in Information Technology (IT). The study focuses on evaluating the predictive capability of AI-based solutions and identifying areas for future research. Using the PRISMA methodology, comprehensive searches were conducted in academic databases using specific search equations. Fifteen articles were selected that addressed the topic from various perspectives, highlighting the use of advanced techniques such as machine learning, deep learning, and transformers to enhance accuracy in predicting IT incidents. Furthermore, it explored how AI for IT Operations (AIOps) facilitates the automation and proactive management of incidents, thereby optimizing operational efficiency and system availability. The findings underscore the effectiveness of these technologies in reducing incident resolution times and improving organizational resilience against emerging technological challenges. Overall, this review emphasizes the importance of continuous innovation and strategic integration of AI in IT service management to enhance operational efficiency and strengthen organizational adaptability.

Downloads

Download data is not yet available.

References

Y. Remil. “How Can Subgroup Discovery Help AIOps?” INSA Lyon, CNRS, LIRIS UMR5205, France. Infologic R&D, Bourg-l`es-Valence, France, 10 Sep 2021, doi: 10.1109/ASE51524.2021.9678697

Y. Remil, A. Bendimerad, M. Chambard, R. Mathonat, M. Plantevit, et al.. “Mining Java Memory Errors using Subjective Interesting Subgroups with Hierarchical Targets”. IEEE International Conference on Data Mining Workshops (ICDM Workshops), IEEE, Dec 2023, Shanghai (Chine), China, doi: 10.1109/ICDMW60847.2023.00159

E. Kapel, L. Cruz, D. Spinellis, and A. van Deursen. 2024. ”On the Difficulty of Identifying Incident-Inducing Changes”. In 46th International Conference on Software Engineering: Software Engineering in Practice (ICSESEIP’24), April 14–20, Lisbon, Portugal. ACM, New York, NY, USA, 11 pages, 2024, doi: 10.1145/3639477.3639755

M. G. Locher, “Optimizing IT operations with AIOps : an investigation into the opportunities and challenges for enterprise adoption,” Master’s thesis, ZHAW Zürcher Hochschule für Angewandte Wissenschaften, Winterthur, 2023, doi: 10.21256/zhaw-29334.

Z. Chen, Y. Kang, L. Li, X. Zhang, et al. “Towards Intelligent Incident Management: Why We Need It and How We Make It”. In Proceedings of the 28th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE ’20), November 8–13, Virtual Event, USA. ACM, New York, NY, USA, 11 pages, 2020, doi: 10.1145/3368089.3417055

D. V. Moreno Avila, “Innovaciones tecnológicas en la seguridad y salud en el trabajo en Colombia: una revisión documental,” Trabajo de grado para optar el título de especialista en seguridad y salud en el trabajo, Universidad Santo Tomás, Bucaramanga, 2024.

W. J. Agamez Julio, “Predicción de riesgos en salud, para personas con obesidad, empleando técnicas de aprendizaje de máquinas,” M.S. thesis, Facultad de Minas, Universidad Nacional de Colombia, Medellín, Colombia, 2022.

H. Ccalla Laguna, “Implantación de un sistema de información basado en la web de registro y gestión de accidentes e incidentes para la mejora de indicadores de seguridad en el trabajo en una compañía minera en la ciudad de Cusco - 2022,” Tesis de grado, Facultad de Ingeniería, Ingeniería de Sistemas e Informática, Universidad Nacional, Lima, Perú, 2023.

J. Kamlofsky, G. Gonzalez, y S. Trigo, “Desarrollo de una guía para el abordaje de incidentes de ciberseguridad en infraestructuras críticas industriales,” en XXIII Workshop de Investigadores en Ciencias de la Computación, RedUNCI - UNdeC, Buenos Aires, Argentina, 15-16 abr. 2021, ISBN: 978-987-24611-3-3.

D. E. Viñas Reyes, "La prevención en la pérdida de datos e información, vital en la vigilancia privada," Ensayo Académico, Facultad de Relaciones Internacionales, Estrategia y Seguridad, Programa Administración de la Seguridad, Bogotá D.C., 2021.

C. A. Pabón Álvarez y M. Flórez Lasprilla, "Mejorar un modelo de gestión de incidentes de seguridad estándar, mediante el uso de una base de conocimiento de ataques a servicios web en ambientes IoT, construida con tecnologías Honeypot, Big data y bases de datos distribuidas sobre Blockchain, que facilite el manejo de eventos de seguridad informática," Tesis de Magister, Instituto Tecnológico Metropolitano, Facultad de Ingenierías, Medellín, Colombia, 2022.

R. O. Castro Dávila, "Implementación de una mesa de ayuda basada en ITIL V4 para agilizar los procesos internos de TI," Tesis, Escuela Profesional de Ingeniería de Sistemas, Facultad de Ingeniería, Arquitectura y Urbanismo, Pimentel, Perú, 2022.

Y. S. Martínez, "La Inteligencia Artificial en la transformación de procesos universitarios," Tecnología e Innovación en Educación Superior, vol. 1, no. 2, pp. 1-10, Oct. 2019.

S. Russell y P. Norvig, "Artificial Intelligence: A Modern Approach," 4th ed., Pearson, 2020.

G. Kaur y M. Kaur, "AIOps: Predictive Analytics for IT Operations," International Journal of Computer Applications, vol. 177, no. 15, pp. 25-30, 2019. doi: 10.5120/ijca2019918581.

D. R. Gagne, "Leveraging AIOps for Proactive IT Incident Management," IT Professional, vol. 22, no. 2, pp. 45-52, 2020. doi: 10.1109/MITP.2020.2977241.

T. L. Gonsalves and S. T. Parab, "IT Incident Management: A Case Study," Procedia Computer Science, vol. 167, pp. 1575-1584, 2020. doi: 10.1016/j.procs.2020.03.328.

J. K. Bedi, "Effective IT Incident Management," IT Professional, vol. 21, no. 3, pp. 55-63, 2019. doi: 10.1109/MITP.2019.2914107.

P. Gupta and R. Ramesh, "Predictive Analytics for IT Incident Management," Journal of Network and Computer Applications, vol. 156, pp. 102-115, 2021. doi: 10.1016/j.jnca.2020.102962.

A. Bilgihan, et al., "RAISE: leveraging responsible AI for service excellence," Journal of Service Management, 2020.

V. Kaartemo and A. Helkkula, "Human–AI resource relations in value cocreation in service ecosystems," Journal of Service Management, 2020.

D. Moreno Avila, "Innovaciones tecnológicas en la seguridad y salud en el trabajo en Colombia: una revisión documental," Journal of Safety Management, 2024.

Y. S. Martínez, "La Inteligencia Artificial en la transformación de procesos universitarios," Tecnología e Innovación en Educación Superior, vol. 1, no. 2, pp. 1-10, Oct. 2019.

S. Ahmed et al., “An Empirical Analysis of State-of-Art Classification Models in an IT Incident Severity Prediction Framework”, Appl. Sci., vol. 13, n.º 6, p. 3843, marzo de 2023. Accedido el 16 de junio de 2024. [En línea]. Disponible: https://doi.org/10.3390/app13063843

Y. Chinthapatla. “Exploring the Transformative Benefits of Integrating Artificial Intelligence into Configuration Management Database (CMDB)”. International Journal of Management, IT & Engineering, Vol. 14 Issue 02, February 2024.

Received: 2024-05-19
Accepted: 2024-08-06
Published: 2024-09-30
How to Cite
[1]
L. J. Amaya Jave, R. A. Querevalú Galán, and A. C. Mendoza de los Santos, “Artificial intelligence in predictive IT incident management”, Innov. softw., vol. 5, no. 2, pp. 85-103, Sep. 2024.
Section
Journal papers

Most read articles by the same author(s)

<< < 1 2