Prediction of arterial hypertension through a logistic regression system

Keywords: Arterial hypertension, Artificial Intelligence, Blood Pressure, Logistic Regression

Abstract

In Peru and the entire world, hypertension is a disease that can progress without showing any symptoms or these being very mild. You can have high blood pressure and not feel any manifestations, arterial hypertension is a serious public health problem in developing countries like ours: According to the 2017 Demographic and Family Health Survey Survey, although the prevalence of hypertension in people aged 15 years and over would have decreased from 14.8% in 2014 to 13.6%, it implies that more than 3 million Peruvians live with high blood pressure. For this reason, our goal is the rapid diagnosis of this silent disease. In the present work, the logistic regression system was used, for which there is a dataset of 5615 analyzed records. This article presents the possibility of detecting a disease such as high blood pressure based on artificial intelligence, since this evil has been increasing in the last years. For this reason, the objective is to quickly predict a possible diagnosis of arterial hypertension, for this, a dataset of 5615 records was analyzed in the Jupyter Notebook web application, establishing 9 input variables and 1 output, in addition, the logistic regression system was used, missing data treatments and outlaiers, graphs of variables, obtaining as a result an acceptable average precision of 87%.

Downloads

Download data is not yet available.

References

Organización Mundial de la Salud. https://www.who.int/es/news-room/fact-sheets/detail/hypertension

Ministerio de Salud el 18 de mayo de 2021 - 2:55 p. https://www.gob.pe/institucion/minsa/noticias/493681-minsa-estima-que-pacientes-con-hipertension-arterial-aumentarian-en-20-durante-la-pandemia

Dr.Raul Gamboa, Revista Peruana de Cardiología: Octubre - Diciembre 1993 https://sisbib.unmsm.edu.pe/bvrevistas/cardiologia/v19_n2/la%20hiper.htm

Celia Mercedes Salcedo Poma, Capitulo 2- Modelo de Regresión Logística https://sisbib.unmsm.edu.pe/bibvirtualdata/Tesis/Basic/Salcedo_pc/enPDF/Cap2.PDF

Jose Martinez Heras-Guía rápida de IArtificial.net https://www.iartificial.net/guia-rapida-iartificial-net/

Universidad de Alcalá, “Scikit-learn, herramienta básica para el data science en Python” 2021. https://www.master-data-scientist.com/scikit-learn-data-science/

Interactive Chaos, 2019. https://interactivechaos.com/es/python/function/sklearnmodelselectiontraintestsplit

Scikit Learn, “Metrics and scoring: quantifying the quality of predictions” https://scikit-learn.org/stable/modules/model_evaluation.html

Aprende con Alf, “La librería Matplotlib” https://aprendeconalf.es/docencia/python/manual/matplotlib/

María Elvira Ferre Jaén.FEIR 45: Regresión logística. Jueves 04 abril 2019,23:30:47 https://gauss.inf.um.es/feir/45/

Failoc-Rojas Virgilio, Dataset externo almacenado zenodo.org. Criterios de cambio hipertensión Perú, datos https://zenodo.org/record/4567767#.YOsdROhKhPZ

Received: 2021-06-23
Accepted: 2021-08-05
Published: 2021-09-30
Contributor Roles
How to Cite
[1]
C. M. Tesillo Gomez, Y. A. Escobar Arcaya, and E. D. León Gutierrez, “Prediction of arterial hypertension through a logistic regression system”, Innov. softw., vol. 2, no. 2, pp. 60-74, Sep. 2021.
Section
Journal papers

Most read articles by the same author(s)