Application of logistic regression for the prediction of demand by medical specialty in hospital outpatient consultation

  • Rene Aquino Arcata Universidad Nacional Jorge Basadre Grohmann image/svg+xml
  • Ronald Cuevas Machaca Hospital Regional de Moquegua, Moquegua
  • Luis Godoy Montoya Universidad Nacional Jorge Basadre Grohmann image/svg+xml
  • Heber Rodríguez Puma Universidad Nacional Jorge Basadre Grohmann image/svg+xml
Keywords: medical care, covid-19, prediction, logistic regression

Abstract

In this work, the analysis of the information produced by the care of patients in the outpatient service was carried out. Studies have been reviewed that are related to the possible methodologies to be used, before choosing one in particular. At the Regional Hospital of Moquegua, since the beginning of the health emergency due to Covid-19, care in the outpatient service was suspended, that is, from March 2020 to June 2021 there is no information on how much the demand would have been by specialty in said service. The objective of the work is to predict, based on age and sex variables, the number of female patients who will request an appointment for outpatient specialties, in a period of time. To solve the problem, the logistic regression technique was used, which initially allowed us to classify and determine the importance group on the basis of which our objective is oriented, taking sex and age as relevant variables. The results obtained from the initial procedure of the model did not show real correspondence to the expected prediction. The conclusions determine that the proposed model requires the inclusion of other input variables

Downloads

Download data is not yet available.

References

“Estadísticas” Boletín Estadístico 2019, [online document], 2019. Disponible: Web Hospital Regional de Moquegua, http://www.hospitalmoquegua.gob.pe.

Jiménez, M. V. G., Izquierdo, J. M. A., & Blanco, A. J. (2000). La predicción del rendimiento académico: regresión lineal versus regresión logística. Psicothema, 12(Su2), 248-525.

Guzmán Aristizábal, S. M., & Hurtado Franco, J. C. (2021). Predicción de la tendencia del indicador S&P 500.

. Erazo Garzón, J. F. (2019). Desarrollo de un modelo de predicción de riesgo de quiebra empresarial para el sector comercial del Ecuador: un enfoque de regresión logística (Doctoral dissertation, Universidad Autónoma de Nuevo León).

Pérez, A., Grandón, E. E., Caniupán, M., & Vargas, G. (2013). Análisis Comparativo de Técnicas de Predicción para Determinar la Deserción Estudiantil: Regresión Logística vs Árboles de Decisión. Arquitectura, 2014, 2015.

Huamán Bernilla, J. N. (2020). Comparación de máquina de soporte vectorial y regresión logística en la predicción de morosidad de cuotas sociales del colegio de ingenieros del Perú consejo departamental Lambayeque.

Maydana Huanca, A. R. (2021). Elección del mejor modelo entre regresión lineal múltiple y árboles de regresión para predecir el precio máximo de las acciones de Intel en función al precio de apertura y volumen de ventas de acciones por día-2019.

Received: 2021-05-25
Accepted: 2021-07-02
Published: 2021-09-30
How to Cite
[1]
R. Aquino Arcata, R. Cuevas Machaca, L. Godoy Montoya, and H. Rodríguez Puma, “Application of logistic regression for the prediction of demand by medical specialty in hospital outpatient consultation”, Innov. softw., vol. 2, no. 2, pp. 44-59, Sep. 2021.
Section
Journal papers

Most read articles by the same author(s)