Application of decision trees in the identification of fraudulent websites
Abstract
Computer security is a very important area in any system that has an internet connection because there are fraudulent websites that can carry out criminal actions towards a person, organization or other entity. Therefore, it is necessary to be able to detect which websites are fraudulent before being able to enter them, for this an implementation was developed through Decision Trees with the Python language to detect and classify them as Legitimate, Suspicious and Fraudulent through 1353 cases that they rank websites.
Downloads
References
"Find Open Datasets and Machine Learning Projects | Kaggle", Kaggle.com, 2020. [Online]. Available:https://www.kaggle.com/datasets. [Accessed: 12 Aug 2020].
"Conjunto de datos", Es.wikipedia.org, 2020. [Online]. Available:https://es.wikipedia.org/wiki/Conjunto_de_datos#cite_ref-Editorial_1-0. [Accessed: 12- Aug- 2020].
"Colab Notebooks", Magenta, 2020. [Online]. Available: https://magenta.tensorflow.org/demos/colab/ . [Accessed:12- Aug- 2020].
"Google Colab: Python y Machine Learning en la nube - Adictos al trabajo", Adictos al trabajo, 2020. [Online].Available: https://www.adictosaltrabajo.com/2019/06/04/google-colab-python-y-machine-learning-en-la-nube/ .[Accessed: 12- Aug- 2020].
"Pandas Basics - Learn Python - Free Interactive Python Tutorial", Learnpython.org, 2020. [Online]. Available:https://www.learnpython.org/es/Pandas%20Basics. [Accessed: 12- Aug- 2020].
"Python Numpy Tutorial (with Jupyter and Colab)", Cs231n.github.io, 2020. [Online]. Available:https://cs231n.github.io/python-numpy-tutorial/#numpy. [Accessed: 12- Aug- 2020].
S. Programacion en Castellano, "Introducción a la librería Matplotlib de Python", Programación en Castellano.,2020. [Online]. Available: https://programacion.net/articulo/introduccion_a_la_libreria_matplotlib_de_python_1599 .[Accessed: 12- Aug- 2020].
"scikit-learn: machine learning in Python — scikit-learn 0.23.2 documentation", Scikit-learn.org, 2020. [Online].Available: https://scikit-learn.org/stable/ . [Accessed: 12- Aug- 2020].
Fabian Pedregosa; Gaël Varoquaux; Alexandre Gramfort; Vincent Michel; Bertrand Thirion; Olivier Grisel;Mathieu Blondel; Peter Prettenhofer; Ron Weiss; Vincent Dubourg; Jake Vanderplas; Alexandre Passos; DavidCournapeau; Matthieu Perrot; Édouard Duchesnay (2011). "Scikit-learn: Machine Learning in Python" . Journal ofMachine Learning Research. 12: 2825–2830.
J. Gallardo, “ Metodología para el Desarrollo de Proyectos en Minería de Datos CRISP-DM”oldemarrodriguez.com, para. 2, Aug. 12, 2007. [Online]. Available:http://www.oldemarrodriguez.com/yahoo_site_admin/assets/docs/Documento_CRISP-DM.2385037 . [Accessed Aug.12, 2020].
Copyright (c) 2022 Innovación y Software
This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors exclusively grant the right to publish their article to the Innovation and Software Journal, which may formally edit or modify the approved text to comply with their own editorial standards and with universal grammatical standards, prior to publication; Likewise, our journal may translate the approved manuscripts into as many languages as it deems necessary and disseminates them in several countries, always giving public recognition to the author or authors of the research.