Application of decision trees in the identification of fraudulent websites

Keywords: Decision Tree, Python, Computer Security, Web Sites

Abstract

Computer security is a very important area in any system that has an internet connection because there are fraudulent websites that can carry out criminal actions towards a person, organization or other entity. Therefore, it is necessary to be able to detect which websites are fraudulent before being able to enter them, for this an implementation was developed through Decision Trees with the Python language to detect and classify them as Legitimate, Suspicious and Fraudulent through 1353 cases that they rank websites.

Downloads

Download data is not yet available.

References

"Find Open Datasets and Machine Learning Projects | Kaggle", Kaggle.com, 2020. [Online]. Available:https://www.kaggle.com/datasets. [Accessed: 12 Aug 2020].

"Conjunto de datos", Es.wikipedia.org, 2020. [Online]. Available:https://es.wikipedia.org/wiki/Conjunto_de_datos#cite_ref-Editorial_1-0. [Accessed: 12- Aug- 2020].

"Colab Notebooks", Magenta, 2020. [Online]. Available: https://magenta.tensorflow.org/demos/colab/ . [Accessed:12- Aug- 2020].

"Google Colab: Python y Machine Learning en la nube - Adictos al trabajo", Adictos al trabajo, 2020. [Online].Available: https://www.adictosaltrabajo.com/2019/06/04/google-colab-python-y-machine-learning-en-la-nube/ .[Accessed: 12- Aug- 2020].

"Pandas Basics - Learn Python - Free Interactive Python Tutorial", Learnpython.org, 2020. [Online]. Available:https://www.learnpython.org/es/Pandas%20Basics. [Accessed: 12- Aug- 2020].

"Python Numpy Tutorial (with Jupyter and Colab)", Cs231n.github.io, 2020. [Online]. Available:https://cs231n.github.io/python-numpy-tutorial/#numpy. [Accessed: 12- Aug- 2020].

S. Programacion en Castellano, "Introducción a la librería Matplotlib de Python", Programación en Castellano.,2020. [Online]. Available: https://programacion.net/articulo/introduccion_a_la_libreria_matplotlib_de_python_1599 .[Accessed: 12- Aug- 2020].

"scikit-learn: machine learning in Python — scikit-learn 0.23.2 documentation", Scikit-learn.org, 2020. [Online].Available: https://scikit-learn.org/stable/ . [Accessed: 12- Aug- 2020].

Fabian Pedregosa; Gaël Varoquaux; Alexandre Gramfort; Vincent Michel; Bertrand Thirion; Olivier Grisel;Mathieu Blondel; Peter Prettenhofer; Ron Weiss; Vincent Dubourg; Jake Vanderplas; Alexandre Passos; DavidCournapeau; Matthieu Perrot; Édouard Duchesnay (2011). "Scikit-learn: Machine Learning in Python" . Journal ofMachine Learning Research. 12: 2825–2830.

J. Gallardo, “ Metodología para el Desarrollo de Proyectos en Minería de Datos CRISP-DM”oldemarrodriguez.com, para. 2, Aug. 12, 2007. [Online]. Available:http://www.oldemarrodriguez.com/yahoo_site_admin/assets/docs/Documento_CRISP-DM.2385037 . [Accessed Aug.12, 2020].

Received: 2021-09-05
Accepted: 2021-11-08
Published: 2022-03-30
How to Cite
[1]
C. Layme Fernández, J. M. Suri Canaza, D. J. Peña Ugarte, and J. Y. Luna Quispe, “Application of decision trees in the identification of fraudulent websites”, Innov. softw., vol. 3, no. 1, pp. 6-16, Mar. 2022.
Section
Journal papers