Use of decision trees to detect if a room is occupied using Python

Keywords: Artificial Intelligence, Decision trees, CO2, Python

Abstract

This article presents a description of the decision trees for determining whether a room is occupied or not. In this research it is empirically demonstrated that it is possible to determine whether a room is occupied or not, using the variables temperature, humidity, luminosity, CO2 level and the humidity ratio, by using decision trees with the SKLEARN libraries in the language Python.

Downloads

Download data is not yet available.

References

M. Minsky, «The age of Intelligent Machines: Thoughts About Artificial Intelligence,» KurzweilAl.net., 1990.

J. De Andres Oviedo, «Tecnicas de inteligencia artificial aplicadas al analsis de la solvencia empresarial,» Universidad de Oviedo, Oviedo, 2000.

G. R. Solarte Martinez y J. Soto Mejia, «Árboles de decisiones en el diagnóstico de enfermedades cardiovasculares,» Scientia et Technica, vol. XVI, nº 49, pp. 104-109, 2011.

Received: 2021-11-18
Accepted: 2021-12-22
Published: 2022-03-30
How to Cite
[1]
J. Atamari Aguilar, C. Flores Conde, J. Mamani Mamani, and S. Rondon Polanco, “Use of decision trees to detect if a room is occupied using Python”, Innov. softw., vol. 3, no. 1, pp. 58-66, Mar. 2022.
Section
Journal papers