Emotion identification system through facial recognition using artificial intelligence

Keywords: Facial expressions, Emotions, Computer Vision, Machine Learning, Artificial Intelligence

Abstract

The main objective of this paper is to develop a system to identify the emotions in a person using face recognition using artificial intelligence. The system development was based on the basic algorithm of Eigenfaces or Principal Component Analysis, one of the most widely used face recognition models. In addition, Python language and some of its available libraries such as Numpy, OpenCV y Sklearn were used for the implementation.

Downloads

Download data is not yet available.

References

J. S. P. Doulik and I. Simonova, Learning Styles in the e-Learning Environment: The Approaches and Research on Longitudinal Changes., 2017.

S. Frankel and M. Mountford, In search of meaningful participation: Making connections between emotions and learning., 2021.

R. R. E. B. C. G. B. M. Taub, R. Azevedo and M. J. Price, How are studentsˆa€™ emotions related to the accuracy of cognitive and metacognitive processes during learning with an intelligent tutoring system?, 2021.

J. Romero, Detecci´on de Emociones y Reconocimiento Facial utilizando aprendizaje profundo, 2020.

J. L. Mancilla Monsalve, Uso de patrones de reconocimiento de las emociones para apoyar la did´actica de ense˜nanza aprendizaje., 2019.

S. Roy, Face emotion recognition with EfficientNetB2, 2021.

E. Jes´us, Detecci´on de Emociones del Usuario, 2014.

E. A. Lara, L. Codigo, H. Alejandro, Q. Cruz, and E. Lara L´evano, Sistema de reconocimiento de gestos faciales captados a trav´es de c´amaras para analizar el nivel de satisfacci´on de clientes en restaurantes., 2019.

G. O. and S. O., Dise˜no de un Sistema de Reconocimiento de rostros aplicando inteligencia y visi´on artificial., 2014.

S. Roy., Face emotion recognition with EfficientNetB2., 2021.

P. Kaur, K. Krishan, S. K. Sharma, and T. Kanchan, Facial-recognition algorithms: A literature review. [Online]. Available: https://doi.org/10.1177/0025802419893168

M. Collins and S. Robert, A Generalization of Principal Component Analysis to the Exponential Family. [Online]. Available: https://www.researchgate.net/publication/2407485 A Generalization of Principal Component Analysis to the Exponential Family

I. T. Jolliffe, Principal Component Analysis. [Online]. Available: https://doi.org/10.1007/b98835

M. Turk and A. Pentland, Eigenfaces for Recognition. [Online]. Available: https://doi.org/10.1162/jocn. 1991.3.1.71

G. L. Baume, Breve introducci´on a Google Colab., 2021.

J. M. Uriarte, Google Drive., 2020.

P. S. Foundation, El tutorial de Python., 2022.

La librer´ıa Numpy. [Online]. Available: https://aprendeconalf.es/docencia/python/manual/numpy/

GeeksforGeeks, M´odulo OS en Python con ejemplos., 2022.

A. Mordvintsev and A. R. K., Tutoriales de Introducci´on a OpenCV-Python., 2022.

Scikit, Tutorial de aprendizaje de Scikit. [Online]. Available: https://www.tutorialspoint.com/scikit learn/ index.htm

Received: 2022-08-20
Accepted: 2022-09-24
Published: 2022-09-30
How to Cite
[1]
A. Paricela Canazas, J. J. Ramos Blaz, P. D. Torres Martínez, and X. Jaquehua Mamani, “Emotion identification system through facial recognition using artificial intelligence”, Innov. softw., vol. 3, no. 2, pp. 140-150, Sep. 2022.
Section
Journal papers