Analysis of an input dataset to perform a tonal analysis system

Keywords: Artificial intelligence, decision tree, music analysis, pitch detection, music

Abstract

Musical analysis is a process that has been carried out for years where different experts have sought to study various musical pieces. This process begins with the learning of tone, note and chord detection, where students have to train their ears to be able to carry it out. In this context, in the following work a decision tree has been made based on a dataset of Bach choirs in order to predict chords from tones. The dataset was divided into 80% to create the tree and 20% for testing, then the data transformation was performed to perform an analysis of the data, with this a decision tree was finally created with a depth of 15 and an accuracy of 75.52%, the tests were finally carried out and we found good results for the accuracy of the tree.

Downloads

Download data is not yet available.

References

Raś, Z. W., & Wieczorkowska, A. A. (Eds.). (2010). Advances in Music Information Retrieval. Studies in Computational Intelligence. doi:10.1007/978-3-642-11674-2

R. Esposito and D. P. Radicioni, “CarpeDiem: Optimizing the viterbi algorithm and applications to supervised sequential learning,” J. Mach. Learn. Res., vol. 10, pp. 1851–1880, 2009.

M. Rohrmeier and I. Cross, “Statistical Properties of Tonal Harmony in Bach ’ s Chorales Statistical Properties of Tonal Harmony in Bach ’ s Chorales,” no. January 2008, 2014.

D. P. Radicioni and R. Esposito, “Learning tonal harmony from Bach chorales,” Procs. 7th Int. Conf. Cogn. Model., no. August, 2006.

D. P. Radicioni and R. Esposito, “BREVE: An HMPerceptron-based chord recognition system,” Stud. Comput. Intell., vol. 274, no. December, pp. 143–164, 2010, doi: 10.1007/978-3-642-11674-2_7.

D. P. Radicioni and R. Esposito, "UCI Machine Learning Repository: Bach Choral Harmony Data Set", Archive.ics.uci.edu, 2014. [Online]. Available: https://archive.ics.uci.edu/ml/datasets/Bach+Choral+Harmony#. [Accessed: 20- Jun- 2022].

I. Bent. "Music analysis in the nineteenth century" 1994.

Federico Sammartino. "Ceros y unos en la musicología. Software y análisis musical". http://resonancias.uc.cl/images/PDFs_n_37/Sammartino.pdf.

P. R. Illescas Casanova. "Análisis tonal asistido por ordenador". Dialnet. https://dialnet.unirioja.es/servlet/tesis?codigo=60733 .

V. Berlanga-Silvente, M. J. Rubio-Hurtado, and R. Vilà-Baños, “Cómo aplicar árboles de decisión en SPSS,” REIRE. Rev. d’Innovació i Recer. en Educ., vol. 6, no. 1, pp. 65–79, 2013, doi: 10.1344/reire2013.6.1615.

D. Tamm, “Road Map,” Dtsch. Arztebl. Int., vol. 115, no. 35–36, p. A1554, 2018, doi: 10.4324/9781003191056-1.

“Te damos la bienvenida a Colab.” https://colab.research.google.com/?utm_source=scs-index.

“Python 3.10.6 documentation,” [Online]. Available: https://docs.python.org/3/.

“NumPy.” https://numpy.org/.

“Pandas.” https://pandas.pydata.org/.

“Seaborn.” https://www.w3schools.com/python/numpy/numpy_random_seaborn.asp.

M. C. Ruiz Abellón, “Introducción a los árboles de decisión,” pp. 1–7, 2014, [Online]. Available: http://www.dmae.upct.es/~mcruiz/Telem06/Teoria/arbol_decision.pdf.

P. Samuels, “Pearson Correlation ?,” no. April 2014, pp. 1–5, 2015, [Online]. Available: https://www.researchgate.net/publication/274635640.

Received: 2023-01-07
Accepted: 2023-02-16
Published: 2023-03-30
How to Cite
[1]
V. M. Vilca Rojas, A. B. Salcedo Chávez, J. M. Castillo Rojas, and V. Byrne Macias, “Analysis of an input dataset to perform a tonal analysis system”, Innov. softw., vol. 4, no. 1, pp. 138-150, Mar. 2023.
Section
Journal papers