Design, Construction and Testing of a Low Cost Ground Sta-tion for CubeSat with IoT-LoRa Technology

Keywords: low cost, LoRa ground station, CubeSat, LoRa reception, satellite

Abstract

This research article presents the design and construction of a low-cost ground station, consisting of a Yagi antenna, Low Noise Amplifier (LNA), and a LoRa receiver node, enabling the reception of CubeSat signals utilizing LoRa technology. The design incorporates general antenna and electronic amplifier design concepts and was validated through laboratory tests assessing elec-trical characteristics, signal radiation, and frequency response. This setup successfully received telemetry data from LoRa-based CubeSat satellites.

Downloads

Download data is not yet available.

Author Biography

Pablo Aníbal Lupera Morillo, National Polytechnic School
Ph.D. Full-time professor at the National Polytechnic School, Quito, Ecuador. He obtained the title of engineer in Electronics and Telecommunications from the National Polytechnic School in 2002 and the title of Ph.D. in technical sciences at the Saint Petersburg State University of Telecommunications in Russia in 2009.
References

N. Saeed, A. Elzanaty, H. Almorad, H. Dahrouj, T. Y. Al-Naffouri, and M.-S. Alouini, “Cubesat communications: Re-cent advances and future challenges,” IEEE Commun. Surv. & Tutorials, vol. 22, no. 3, pp. 1839–1862, 2020.

D. Kjendal, “LoRa-Alliance regional parameters overview,” J. ICT Stand., pp. 35–46, 2021.

P. Lepcha et al., “Assessing the Capacity and Coverage of Satellite IoT for Developing Countries Using a CubeSat,” Appl. Sci., vol. 12, no. 17, p. 8623, 2022.

E. Bashir and M. Luštrek, “Low power LoRa transmission in low earth orbiting satellites,” Intell. Environ., p. 233, 2021.

G. Flores, E. López, L. Tituaña, and P. Lupera, “Low Cost Multiband Receiver for the Reception of Images from Me-teorological Satellites and SSTV,” Rev. Politécnica, vol. 40, no. 2, pp. 25–30, 2018.

M. Aref and A. Sikora, “Free space range measurements with Semtech LoRaTM technology,” in 2014 2nd interna-tional symposium on wireless systems within the conferences on intelligent data acquisition and advanced computing sys-tems, 2014, pp. 19–23.

J. B. Hagen, Radio-frequency electronics: circuits and applications. Cambridge University Press, 2009.

J. A. M. Lara, J. A. R. Agredo, and M. P. M. Atencia, “Sistema de monitoreo de señales en tierra usando la Estación Terrena Satelital UPTC,” INGE CUC, vol. 15, no. 1, pp. 36–44, 2019.

A. Maier, A. Sharp, and Y. Vagapov, “Comparative analysis and practical implementation of the ESP32 microcon-troller module for the internet of things,” in 2017 Internet Technologies and Applications (ITA), 2017, pp. 143–148.

H. Daryanavard and others, “A Low Noise Figure Rail-to-Rail Variable-Gain LNA for 900-MHz LoRa Application in 65nm CMOS Technology,” 2022.

C. A. Trasviña-Moreno, R. Blasco, R. Casas, and A. Asensio, “A network performance analysis of LoRa modulation for LP.WAN sensor devices,” in Ubiquitous computing and ambient intelligence, Springer, 2016, pp. 174–181.

M. A. Moya Quimbita, “Evaluación de pasarela LoRa/LoRaWAN en entornos urbanos,” 2018.

M. A. Gaybor Murillo, M. D. Maridueña Chunga, and others, “Diseño de un sistema de adquisición de datos de una red de sensores inalámbricos que miden variables oceanográficas en el perfil costanero de Santa Elena, usando tecnología LoRa,” Espol, 2018.

P. P. Viezbicke, Yagi antenna design, vol. 688. US Government Printing Office, 1976.

W. Tomasi, Sistemas de comunicaciones electrónicas. Pearson education, 2003.

Received: 2023-08-10
Accepted: 2023-11-05
Published: 2024-03-30
How to Cite
[1]
G. F. Flores Cadena, “Design, Construction and Testing of a Low Cost Ground Sta-tion for CubeSat with IoT-LoRa Technology ”, Innov. softw., vol. 5, no. 1, pp. 6-19, Mar. 2024.
Section
Journal papers