Identificador de sentimientos de comentarios de hoteles utilizando BERT

Palabras clave: Clasificación, comentarios, dataset, exactitud, promedio, procesamiento de lenguaje natural, NLP

Resumen

La forma de escribir del ser humano fue cambiando con el tiempo siendo reducidas/abreviadas por las nuevas generaciones. El proyecto investigará estas formas de escribir de la personas a través de comentarios de hoteles, para poder identificar y realizar su clasificación de acuerdo si este es un comentario formal o informal; a la vez se tratará de identificar cada uno de estos si cuenta con información positiva o negativa. Todos los procesos para identificar textos serán usados con el Procesamiento de lenguaje natural (NLP), así lograremos identificar diferentes oraciones de acuerdo al contexto que se encontrará en el comentario de la base de datos, la cual será sacada de TripAdvisor.

Descargas

La descarga de datos todavía no está disponible.

Citas

S. Vidya (2018). “Cross Domain Sentiment Classification Using Natural Language Processing”. Assistant Professor, Department of Computer Science and Engineering, Kalasalingam Institute of Technology, KrishnaSnkoil, Tamil Nadu, India. Recuperado de: https://www.researchgate.net/profile/Vidya-Soundarapandian/publication/339901166_Cross_Domain_Sentiment_Classification_Using_Natural_Language_Processing/links/5e6b74c2a6fdccf321d98d41/Cross-Domain-Sentiment-Classification-Using-Natural-Language-Processing.pdf

Ishaq, A., Umer, M., Mushtaq, M., Medaglia, C., Siddiqui, H., Mehmood, A. and Choi, G., 2020. Extensive hotel reviews classification using long short term memory. Journal of Ambient Intelligence and Humanized Computing, 12(10), pp.9375-9385.

Ghabayen, A. and Ahmed, B., 2019. Polarity Analysis of Customer Reviews Based on Part-of-Speech Subcategory. Journal of Intelligent Systems, 29(1), pp.1535-1544.

Shin, S., Du, Q. and Xiang, Z., 2018. What’s Vs. How’s in Online Hotel Reviews: Comparing Information Value of Content and Writing Style with Machine Learning. Information and Communication Technologies in Tourism 2019, pp.321-332.

Colab.research.google.com. 2022. Google Colaboratory. [online] Available at: <https://colab.research.google.com/github/bentrevett/pytorch-sentiment-analysis/blob/master/1%20-%20Simple%20Sentiment%20Analysis.ipynb?authuser=1#scrollTo=RMDoLMlxaUql> [Accessed 10 July 2022].

Medium. 2022. Churning the Confusion out of the Confusion Matrix. [online] Available at: <https://blog.clairvoyantsoft.com/churning-the-confusion-out-of-the-confusion-matrix-b74fb806e66> [Accessed 10 July 2022].

E. Cambria and B. White, "Jumping NLP Curves: A Review of Natural Language Processing Research [Review Article]," in IEEE Computational Intelligence Magazine, vol. 9, no. 2, pp. 48-57, May 2014, doi: 10.1109/MCI.2014.2307227.

SALAMI, Salami. IMPLEMENTING NEURO LINGUISTIC PROGRAMMING (NLP) IN CHANGING STUDENTS’ BEHAVIOR: RESEARCH DONE AT ISLAMIC UNIVERSITIES IN ACEH. Jurnal Ilmiah Peuradeun, [S.l.], v. 3, n. 2, p. 235-256, may 2015. ISSN 2443-2067. Available at: <http://www.journal.scadindependent.org/index.php/jipeuradeun/article/view/65>. Date accessed: 10 july 2022.

D. Yu, K. Yao and Y. Zhang, "The Computational Network Toolkit [Best of the Web]," in IEEE Signal Processing Magazine, vol. 32, no. 6, pp. 123-126, Nov. 2015, doi: 10.1109/MSP.2015.2462371.

E. H. Houssein, R. E. Mohamed and A. A. Ali, "Machine Learning Techniques for Biomedical Natural Language Processing: A Comprehensive Review," in IEEE Access, vol. 9, pp. 140628-140653, 2021, doi: 10.1109/ACCESS.2021.3119621.

A. Elnagar, S. M. Yagi, A. B. Nassif, I. Shahin and S. A. Salloum, "Systematic Literature Review of Dialectal Arabic: Identification and Detection," in IEEE Access, vol. 9, pp. 31010-31042, 2021, doi: 10.1109/ACCESS.2021.3059504.

D. Mahendran, C. Luo and B. T. Mcinnes, "Review: Privacy-Preservation in the Context of Natural Language Processing," in IEEE Access, vol. 9, pp. 147600-147612, 2021, doi: 10.1109/ACCESS.2021.3124163.

X. Feng and Y. Zeng, "Neural Collaborative Embedding From Reviews for Recommendation," in IEEE Access, vol. 7, pp. 103263-103274, 2019, doi: 10.1109/ACCESS.2019.2931357.

X. Feng and Y. Zeng, "Multi-Level Fine-Grained Interactions for Collaborative Filtering," in IEEE Access, vol. 7, pp. 143169-143184, 2019, doi: 10.1109/ACCESS.2019.2941236.

S. Salloum, T. Gaber, S. Vadera and K. Shaalan, "A Systematic Literature Review on Phishing Email Detection Using Natural Language Processing Techniques," in IEEE Access, vol. 10, pp. 65703-65727, 2022, doi: 10.1109/ACCESS.2022.3183083.

Recibido: 2022-10-22
Aceptado: 2022-12-10
Publicado: 2023-03-30
Cómo citar
[1]
W. M. Medina Pauca y C. Huamani Tito, «Identificador de sentimientos de comentarios de hoteles utilizando BERT», Innov. softw., vol. 4, n.º 1, pp. 52-62, mar. 2023.
Sección
Artículos originales