Biometric access control system through facial recognition with liveness techniques

Keywords: Attendance control, Artificial inteligence, Facial recognition, Liveness techniques

Abstract

The purpose of this article is a proposal for a facial recognition system with liveness techniques for access control using neural networks. The main focus has been aimed at improving the security of access to a system through the application of artificial intelligence in biometrics, avoiding any type of fraud and impersonation. Python was used along with the following libraries like Tkinter, Cv2, Numpy, PIL, Imutils, Mediapipe, Os, Math, Dlib, Face-recognition, Csv, Tkcalendar and Bcrypt. The results obtained by carrying out 40 tests with a real person were a similarity accuracy of 82,11%, on the other hand, to verify that the person is carrying out a live recognition, 20 tests were carried out with the photograph of that person, in this case, the system did not allow entry since the liveness verification was not met, thus concluding that the recognition system is effective and guarantees greater security in access control.

Downloads

Download data is not yet available.

References

N. Juan, M. Ciberdelincuencia, U. Realidad, R. Neira, and J. Manuel, “Universidad piloto de colombia. reyes ciberdelincuencia una realidad - virtual contada a medias,” 2024, accedido el 03 de Julio de 2024. [Online]. Available: https://repository.unipiloto.edu.co/bitstream/handle/20.500.12277/2784/ Trabajo%20de%20grado.pdf?sequence=1&isAllowed=y

F. Serratosa, “La biometría para la identificación de las personas,” 2024, accedido el 03 de Julio de 2024. [Online]. Available: https://sistemamid.com.ar/panel/uploads/biblioteca/2015-03-22_12-05-01117594.pdf#page=14&zoom=100

S. Chakraborty and D. Das, “An overview of face liveness detection,” arXiv.org, 2014, accedido el 03 de Junio de 2024. [Online]. Available: https://arxiv.org/abs/1405.2227

A. Pérez del Barrio, P. Menéndez Fernández-Miranda, P. Sanz Bellón, L. Lloret Iglesias, and D. Rodíguez González, “Inteligencia artificial en radiología: introducción a los conceptos más importantes,” Radiología, vol. 64, no. 3, pp. 228–236, 2022, accedido el 1 de junio de 2024.

F. Serratosa, “La biometría para la identificación de las personas,” 2024, accedido el 1 de junio de 2024. [Online]. Available: https://sistemamid.com.ar/panel/uploads/biblioteca/2015-03-22_12-05-01117594.pdf

E. Jove Perez, J. L. Calvo Rolle, D. Urda Muñoz, A. Herrero Cosio, U. Zurutuza, and V. Casola, “Recent advances in the application of data science to industrial cybersecurity,” DYNA, vol. 96, no. 3, pp. 231–232, 2021.

J. Francisco, R. Veliz, M. Abelardo, and A. Ramírez, “Universidad nacional del callao estado del arte del aprendizaje automático relacionado con la lógica difusa’,” 2024, accedido el 1 de junio de 2024. [Online]. Available: https://repositorio.unac.edu.pe/bitstream/handle/20.500.12952/5580/Informe%20Final-Ramirez%20Veliz-FIIS-2019.pdf?sequence=1&isAllowed=y

Artola, J. Antonio, and P. Carrasco, “Interfaces gráficas de usuario con tk,” 2024, accedido el 1 de junio de 2024. [Online]. Available: https://idus.us.es/bitstream/handle/11441/89506/TFG-2402-ARTOLA.pdf?sequence=1&isAllowed=y#page=28&zoom=100

“Interfaces gráficas de usuario con tk,” 2024, accedido el 16 de junio de 2024. [Online]. Available: https://docs.python.org/es/3/library/tk.html

“Opencv: Introduction,” 2024, accedido el 16 de junio de 2024. [Online]. Available: https://docs.opencv.org/4.x/d1/dfb/intro.html

L. Gonzalez, “Librería numpy - aprende ia,” 2020, accedido el 16 de junio de 2024. [Online]. Available: https://aprendeia.com/libreria-de-python-numpy-machine-learning/

L. Chuquimarca Jimenez, S. Pinzon Tituana, and A. Rosales Pincay, “Detección de mascarilla para covid- 19 a través de aprendizaje profundo usando opencv y cascade trainer gui,” Revista Científica y Tecnológica UPSE, vol. 8, no. 1, pp. 68–73, 2021.

X. Teira, N. A. Guerra, G. Castillo, L. Muñoz, and N. González, “Detección de mascarillas utilizando reconocimiento facial,” Tecnología en Marcha, vol. 36, no. 8, pp. 57–65, 2023.

“os - interfaces misceláneas del sistema operativo - documentación de python - 3.10.13,” 2024, accedido el 16 de junio de 2024. [Online]. Available: https://docs.python.org/es/3.10/library/os.html

“math - funciones matemáticas - documentación de python - 3.10.13,” 2023, accedido el 16 de junio de 2024. [Online]. Available: https://docs.python.org/es/3.10/library/math.html

A. Tabassum et al., “Drowsiness and distraction detection system using python,” 2021, accedido el 16 de junio de 2024. [Online]. Available: https://www.irjmets.com/uploadedfiles/paper/volume3/issue_5_may_2021/11433/1628083464.pdf

A. Rosebrock, “Face recognition with opencv, python, and deep learning,” 2018, accedido el 16 de junio de 2024. [Online]. Available: https://pyimagesearch.com/2018/06/18/ face-recognition-with-opencv-python-and-deep-learning/

S. Latifi, Ed., 17th International Conference on Information Technology - New Generations (ITNG 2020). Cham: Springer International Publishing, 2020, accedido el 16 de junio de 2024.

“Mediapipe face mesh,” 2024, accedido el 1 de junio de 2024. [Online]. Available: https://github.com/google-ai-edge/mediapipe/wiki/MediaPipe-Face-Mesh

Received: 2024-07-12
Accepted: 2024-09-02
Published: 2024-09-30
How to Cite
[1]
K. J. Rodriguez Ponce, F. J. Gutierrez Sanchez, and A. C. Mendoza De los Santos, “Biometric access control system through facial recognition with liveness techniques”, Innov. softw., vol. 5, no. 2, pp. 114-128, Sep. 2024.
Section
Journal papers

Most read articles by the same author(s)

1 2 > >>