Deep Learning Techniques and Tools for Intelligent Weather Forecasting
Abstract
In this paper, an analysis of deep learning techniques for weather forecasting using statistical downscaling approaches was developed. These are important, since they allow adjusting large-scale climate projections generated by the GCM climate model to more accurate and defined forecasts for specific areas, thus allowing overcoming the limitations of traditional numerical models in the representation of local and small-scale phenomena. Studies implementing Convolutional Neural Networks (CNN) and Generative Adversarial Networks (GAN) were analyzed in order to improve the spatial and temporal resolution of climate data. Both tools and techniques have proven to be effective in projects such as VALUE, which is in charge of evaluating downscaling methods in Europe, and DL4DS, a Python library in charge of applying deep learning algorithms to empirical downscaling of climate data. The main objective of this paper was to analyze the effectiveness of both tools and techniques focused on accuracy, scalability and computational efficiency, providing a complete overview of their use for the improvement of local weather forecasting.
Downloads
References
CEUPE, "Meteorología: qué es y su importancia," CEUPE, n.d. [En línea]. Disponible: https://www.ceupe.com/blog/meteorologia-que-es-y-su-importancia.html. [Accedido: 09-dic-2024].
J. M. Viñas Rubio, "Origen y desarrollos actuales de la predicción meteorológica," EM, vol. 45, no. 2, pp. 1-20, n.d. [En línea]. Disponible: https://repositorio.uam.es/bitstream/handle/10486/678728/EM_45_2.pdf?sequence=1. [Accedido: 09-dic-2024].
P. Bauer, A. Thorpe, y G. Brunet, "The quiet revolution of numerical weather prediction," Nature, vol. 525, no. 7567, pp. 47–55, 2015. [Online]. Disponible: https://doi.org/10.1038/nature14956. [Accedido: 10 de diciembre de 2024].
P. Lynch, "The origins of computer weather prediction and climate modeling," Journal of Computational Physics, vol. 227, no. 7, pp. 3431–3444, 2008. [Online]. Disponible: https://doi.org/10.1016/j.jcp.2007.02.034. [Accedido: 10 de diciembre de 2024].
Stengel, K., Glaws, A., Hettinger, D., & King, R. N. (2020). "Adversarial super-resolution of climatological wind and solar data," Proceedings of the National Academy of Sciences, vol. 117, no. 29, pp. 16805–16815.
J. Murphy, “Predictions of climate change over Europe using statistical and dynamical downscaling techniques”, Int. J. Climatol., vol. 20, n.º 5, pp. 489–501, abril de 2000. Accedido el 11 de diciembre de 2024. [En línea]. Disponible: https://doi.org/10.1002/(sici)1097-0088(200004)20:5%3C489::aid-joc484%3E3.0.co;2-6
K. U. Jaseena y B. C. Kovoor, “Deterministic weather forecasting models based on intelligent predictors: A survey”, J. King Saud Univ. - Comput. Inf. Sci., septiembre de 2020. Accedido el 13 de diciembre de 2024. [En línea]. Disponible: https://doi.org/10.1016/j.jksuci.2020.09.009
“A Survey of Weather Forecasting based on Machine Learning and Deep Learning Techniques”, Int. J. Emerg. Trends Eng. Res., vol. 9, n.º 7, pp. 988–993, julio de 2021. Accedido el 13 de diciembre de 2024. [En línea]. Disponible: https://doi.org/10.30534/ijeter/2021/24972021
A. Bihlo, “A generative adversarial network approach to (ensemble) weather prediction”, Neural Netw., vol. 139, pp. 1–16, julio de 2021. Accedido el 12 de diciembre de 2024. [En línea]. Disponible: https://doi.org/10.1016/j.neunet.2021.02.003
J. A. Weyn, D. R. Durran y R. Caruana, “Improving Data‐Driven Global Weather Prediction Using Deep Convolutional Neural Networks on a Cubed Sphere”, J. Advances Model. Earth Syst., vol. 12, n.º 9, septiembre de 2020. Accedido el 12 de diciembre de 2024. [En línea]. Disponible: https://doi.org/10.1029/2020ms002109
H. S. Walia and M. Mahajan, "Automatic feature learning using neuro-fuzzy systems: a survey," Pattern Analysis and Applications, vol. 23, no. 2, pp. 451–471, 2020. Accedido el 12 de diciembre de 2024. [En línea]. Disponible en: https://link.springer.com/article/10.1007/s10044-020-00898-1
Copyright (c) 2025 Innovation and Software

This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors exclusively grant the right to publish their article to the Innovation and Software Journal, which may formally edit or modify the approved text to comply with their own editorial standards and with universal grammatical standards, prior to publication; Likewise, our journal may translate the approved manuscripts into as many languages as it deems necessary and disseminates them in several countries, always giving public recognition to the author or authors of the research.